Transport properties of electrons in fractal magnetic-barrier structures
ABSTRACT
Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.
ACKNOWLEDGMENTS
This project was supported by NSFC (No. 10974109) and by 973 Program (No. 2006CB605105).
REFERENCES
1.M. A. McCord and D. D. Awschalom, Appl. Phys. Lett. 57, 2153 (1990). https://doi.org/10.1063/1.103923, Google ScholarScitation
2.M. L. Leadbeater, S. J. Allen, J. F. DeRosa, J. P. Harbison, T. Sands, R. Ramesh, L. T. Florez, and V. G. Keramidas, J. Appl. Phys. 69, 4689 (1991) https://doi.org/10.1063/1.348298; Google ScholarScitation
K. M. Krishnan, Appl. Phys. Lett. 61, 2365 (1992) https://doi.org/10.1063/1.108245; , Google ScholarScitation, ISI
W. Van Roy, E. L. Crapi, M. Van Hove, A. Van Esch, R. Bogaerts, J. De Boeck, and G. Borghs, J. Magn. Magn. Mater. 121, 197 (1993) https://doi.org/10.1016/0304-8853(93)91184-9; , Google ScholarCrossref
R. Yagi and Y. Iye, J. Phys. Soc. Jpn. 62, 1279 (1993). https://doi.org/10.1143/JPSJ.62.1279, , Google ScholarCrossref
3.A. K. Geim, Pis'ma Zh. Eksp. Teor. Fiz. 50, 359 (1989) Google Scholar
A. K. Geim, [JETP Lett. 50, 389 (1990)]; Google Scholar
S. J. Bending, K. von Klitzing, and K. Ploog, Phys. Rev. Lett. 65, 1060 (1990). https://doi.org/10.1103/PhysRevLett.65.1060, Google ScholarCrossref
4.H. A. Carmona, A. K. Geim, A. Nogaret, P. C. Main, T. J. Foster, M. Henini, S. P. Beaumont, and M. G. Blamire, Phys. Rev. Lett. 74, 3009 (1995) https://doi.org/10.1103/PhysRevLett.74.3009; Google ScholarCrossref
P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl, and H. Nickel, Phys. Rev. Lett. 74, 3013 (1995) https://doi.org/10.1103/PhysRevLett.74.3013; , Google ScholarCrossref
S. Izawa, S. Katsumoto, A. Endo, and Y. Iye, J. Phys. Soc. Jpn. 64, 706 (1995). https://doi.org/10.1143/JPSJ.64.706, , Google ScholarCrossref
5.A. Matulis, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. Lett. 72, 1518 (1994). https://doi.org/10.1103/PhysRevLett.72.1518, Google ScholarCrossref
6.J. Q. You, L. D. Zhang, and P. K. Ghosh, Phys. Rev. B 52, 17243 (1995). https://doi.org/10.1103/PhysRevB.52.17243, Google ScholarCrossref
7.Y. Guo, B. L. Gu, W. H. Duan, and Y. Zhang, Phys. Rev. B 55, 9314 (1997). https://doi.org/10.1103/PhysRevB.55.9314, Google ScholarCrossref
8.J. Q. You and L. D. Zhang, Phys. Rev. B 54, 1526 (1996). https://doi.org/10.1103/PhysRevB.54.1526, Google ScholarCrossref
9.Y. Guo, Z. Q. Li, B. L. Gu, Q. Sun, J. Z. Yu, and Y. Kawazoe, Eur. Phys. J. B 3, 263 (1998). https://doi.org/10.1007/s100510050312, Google ScholarCrossref
10.I. S. Ibrahim and F. M. Peeters, Phys. Rev. B 52, 17321 (1995). https://doi.org/10.1103/PhysRevB.52.17321, Google ScholarCrossref
11.Y. Guo, B. L. Gu, Z. Q. Li, J. Z. Yu, and Y. Kawazoe, J. Appl. Phys. 83, 4545 (1998). https://doi.org/10.1063/1.367218, Google ScholarScitation, ISI
12.Y. Guo, B. L. Gu, Z. Q. Li, J. Z. Yu, and Y. Kawazoe, J. Phys.: Condens. Matter 10, 1549 (1998). https://doi.org/10.1088/0953-8984/10/7/008, Google ScholarCrossref
13.B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982). Google Scholar
14.T. Ficker and P. Benesovsky, Eur. J. Phys. 23, 403 (2002). https://doi.org/10.1088/0143-0807/23/4/303, Google ScholarCrossref
15.V. V. Konotop, O. I. Yordanov, and I. V. Yurkevich, Europhys. Lett. 12, 481 (1990). https://doi.org/10.1209/0295-5075/12/6/001, Google ScholarCrossref
16.X. Sun and D. L. Jaggard, J. Appl. Phys. 70, 2500 (1991). https://doi.org/10.1063/1.349407, Google ScholarScitation
17.M. Bertolotti, P. Masciulli, and C. Sibilia, Opt. Lett. 19, 777 (1994). https://doi.org/10.1364/OL.19.000777, Google ScholarCrossref
18.M. Bertolotti, P. Masciulli, C. Sibilia, F. Wijnands, and H. Hoekstra, J. Opt. Soc. Am. B 13, 628 (1996). https://doi.org/10.1364/JOSAB.13.000628, Google ScholarCrossref
19.A. V. Lavrinenko, S. V. Zhukovsky, K. S. Sandomirski, and S. V. Gaponenko, Phys. Rev. E 65, 036621 (2002). https://doi.org/10.1103/PhysRevE.65.036621, Google ScholarCrossref
20.F. Chiadini, V. Fiumara, I. M. Pinto, and A. Scaglione, Microwave Opt. Technol. Lett. 37, 339 (2003). https://doi.org/10.1002/mop.10912, Google ScholarCrossref
21.M. Yamanaka and M. Kohmoto, arXiv:cond-mat/0410239 (unpublished). Google Scholar
22.N. Hatano, J. Phys. Soc. Jpn. 74, 3093 (2005). https://doi.org/10.1143/JPSJ.74.3093, Google ScholarCrossref
23.U. Sangawa, IEICE Trans. Electron. E88-C, 1981 (2005). https://doi.org/10.1093/ietele/e88-c.10.1981, Google ScholarCrossref
24.S. Sengupta, A. Chakrabarti, and S. Chattopadhyay, Physica B 344, 307 (2004). https://doi.org/10.1016/j.physb.2003.09.273, Google ScholarCrossref
25.S. Sengupta, A. Chakrabarti, and S. Chattopadhyay, Phys. Rev. B 71, 134204 (2005). https://doi.org/10.1103/PhysRevB.71.134204, Google ScholarCrossref
26.M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983). https://doi.org/10.1103/PhysRevLett.50.1870, Google ScholarCrossref
27.M. Kohmoto and Y. Oono, Phys. Lett. A 102, 145 (1984). https://doi.org/10.1016/0375-9601(84)90928-9, Google ScholarCrossref
28.M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35, 1020 (1987). https://doi.org/10.1103/PhysRevB.35.1020, Google ScholarCrossref
29.M. Kohmoto, B. Sutherland, and K. Iguchi, Phys. Rev. Lett. 58, 2436 (1987). https://doi.org/10.1103/PhysRevLett.58.2436, Google ScholarCrossref
30.W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, Phys. Rev. Lett. 72, 633 (1994). https://doi.org/10.1103/PhysRevLett.72.633, Google ScholarCrossref
31.T. Hattori, N. Tsurumachi, S. Kawato, and H. Nakatsuka, Phys. Rev. B 50, 4220 (1994). https://doi.org/10.1103/PhysRevB.50.4220, Google ScholarCrossref
32.K. A. Makarov, J. Math. Phys. 35, 1522 (1994). https://doi.org/10.1063/1.530604, Google ScholarScitation
33.N. L. Chuprikov, J. Phys. A 33, 4293 (2000). https://doi.org/10.1088/0305-4470/33/23/307, Google ScholarCrossref
34.N. L. Chuprikov and D. N. Zhabin, J. Phys. A 33, 4309 (2000). https://doi.org/10.1088/0305-4470/33/23/308, Google ScholarCrossref
35.J. A. Monsoriu, F. R. Villatoro, M. J. MarÃn, J. F. UrchueguÃa, and P. Fernández de Córdoba, Eur. J. Phys. 26, 603 (2005). https://doi.org/10.1088/0143-0807/26/4/005, Google ScholarCrossref
36.F. Craciun, A. Bettucci, E. Molinari, A. Petri, and A. Alippi, Phys. Rev. Lett. 68, 1555 (1992). https://doi.org/10.1103/PhysRevLett.68.1555, Google ScholarCrossref
37.A. Petri, A. Alippi, A. Bettucci, F. Cracium, F. Farelly, and E. Molinary, Phys. Rev. B 49, 15067 (1994). https://doi.org/10.1103/PhysRevB.49.15067, Google ScholarCrossref
38.M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986). https://doi.org/10.1103/PhysRevLett.57.1761, Google ScholarCrossref