Deterministic quantum teleportation with atoms
& R. Blatt
Abstract
Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown1 that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated2,3,4,5,6, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal1, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.
References
1.
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Show contextfor reference 1
2.
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)
Show contextfor reference 2
3.
Boschi, D., Branca, S., DeMartini, F., Hardy, L. & Popescu, S.Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)
Show contextfor reference 3
4.
Pan, J.-W., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A.Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001)
Show contextfor reference 4
5.
Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N.Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)
Show contextfor reference 5
6.
Fattal, D., Diamanti, E., Inoue, K. & Yamamoto, Y. Quantum teleportation with a quantum dot single photon source. Phys. Rev. Lett. 92, 037904 (2004)
Show contextfor reference 6
7.
Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982)
Show contextfor reference 7
8.
Nielsen, M. A. & Chuang, I. J. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000)
Show contextfor reference 8
9.
Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)
Show contextfor reference 9
10.
Furusawa, A. et al. Unconditional quantum teleportation. Science282, 706–709 (1998)
Show contextfor reference 10
11.
Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998)
Show contextfor reference 11
12.
Barrett, M. D. et al. Quantum teleportation with atomic qubits. Nature (this issue)
Show contextfor reference 12
13.
Schmidt-Kaler, F. et al. How to realize a universal quantum gate with trapped ions. Appl. Phys. B 77, 789–796 (2003)
Show contextfor reference 13
14.
Roos, C. F. et al. Bell states of atoms with ultra long lifetimes and their tomographic state analysis. Phys. Rev. Lett. (in the press) Preprint at〈 http://arXiv.org/abs/ physics/0307210〉 (2003)
Show contextfor reference 14
15.
Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)
Show contextfor reference 15
16.
Gisin, N. Nonlocality criteria for quantum teleportation. Phys. Lett. A 210, 157–159 (1996)
Show contextfor reference 16
17.
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)
Show contextfor reference 17
18.
Gulde, S. et al. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 412, 48–50 (2003)
Show contextfor reference 18
19.
Hahn, E. L. Spin Echoes. Phys. Rev. 80, 580–594 (1950)
Show contextfor reference 19
Acknowledgements
We thank H. Briegel and P. Zoller for a critical reading of the manuscript. We gratefully acknowledge support by the Austrian Science Fund (FWF), by the European Commission (QUEST, QUBITS and QGATES networks), by the Institut für Quanteninformation, and by the Los Alamos LDRD Program. This material is based upon work supported in part by the US Army Research Office. H.H is funded by the Marie-Curie program of the European Union.
Author information
Affiliations
Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
M. Riebe
, H. Häffner
, C. F. Roos
, W. Hänsel
, J. Benhelm
, G. P. T. Lancaster
, T. W. Körber
, C. Becher
, F. Schmidt-Kaler
& R. Blatt
Theoretical Division T-4, Los Alamos National Laboratory, Los Alamos NM 87545, USA
D. F. V. James
Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 25, A-6020 Innsbruck, Austria
R. Blatt