Translate

Tuesday, January 28, 2020

Search for Hidden Chambers in the Pyramids and hidden science revealed






Search for Hidden Chambers in the Pyramids and hidden science revealed


The Great Pyramid, or Khufu’s Pyramid, was built on the Giza plateau in Egypt during the fourth dynasty by the pharaoh Khufu (Cheops)1, who reigned from 2509 BC to 2483 BC. Despite being one of the oldest and largest monuments on Earth, there is no consensus about how it was built 22,3. To understand its internal structure better, we imaged the pyramid using muons, which are by-products of cosmic rays that are only partially absorbed by stone4,5,6. The resulting cosmic-ray muon radiography allows us to visualize the known and any unknown voids in the pyramid in a non-invasive way. Here we report the discovery of a large void (with a cross-section similar to that of the Grand Gallery and a minimum length of 30 metres) situated above the Grand Gallery. This constitutes the first major inner structure found in the Great Pyramid since the nineteenth century 11. The void, named Scan Pyramids’ Big Void, was first observed with nuclear emulsion films7,8,9 installed in the Queen’s chamber, then confirmed with scintillator hodoscopes10,11 set up in the same chamber and finally re-confirmed with gas detectors 1212 outside the pyramid. This large void has therefore been detected with high confidence by three different muon detection technologies and three independent analyses. These results constitute a breakthrough for the understanding of the internal structure of Khufu’s Pyramid. Although there is currently no information about the intended purpose of this void, these findings show how modern particle physics can shed new light on the world’s archaeological heritage.


References

1

Lehner, M. The Complete Pyramids: Solving the Ancient Mysteries (Thames and Hudson, 2008)
2

Hawass, Z. Pyramid construction: new evidence discovered in Giza. In Stationen. Beiträge zur Kulturgeschichte Ägyptens Rainer Stadelmann gewidmet (eds Guksch, H. & Polz, D. ) 53–62 (Philipp von Zabern, 1998)
3

Smith, C. B ., Hawass, Z. & Lehner, M. How the Great Pyramid was Built (Harper Collins, 2006)
4

Particle Data Group. Review of particle physics. Chin. Phys. C40, 100001 (2016)
5

Alvarez, L. W. et al. Search for hidden chambers in the pyramids. Science 167, 832–839 (1970)
6

Tanaka, H. K. M., Nakano, T., Takahashi, S., Yoshida, J. & Niwa, K. Development of an emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of a volcano, Mt. Asama. Nucl. Instrum. Methods A 575, 489–497 (2007)
7

Morishima, K., Nishio, A., Moto, M., Nakano, T. & Nakamura, M., Development of nuclear emulsion for muography. Ann. Geophys. 60, 0112 (2017)
8

Nakamura, T. A. et al. The OPERA film: new nuclear emulsion for large-scale, high-precision experiments. Nucl. Instrum. Methods A 556, 80–86 (2006)
9

Nishio, A., Morishima, K., Kuwabara, K. & Nakamura, M. Development of nuclear emulsion detector for muon radiography. Phys. Proc. 80, 74–77 (2015)
10

Fujii, H. et al. Detection of on-surface objects with an underground radiography detector system using cosmic-ray muons. Progr. Theor. Exp. Phys. 5, 053C01 (2017)
11

Fujii, H. et al. Performance of a remotely located muon radiography system to identify the inner structure of a nuclear plant. Progr. Theor. Exp. Phys. 7, 073C01 (2013)
12

Bouteille, S. et al. A Micromegas-based telescope for muon tomography: the WatTo experiment. Nucl. Instrum. Methods A 834, 223–228 (2016)
13

Dash, G. The Great Pyramid’s footprint: results from our 2015 survey. Aeragram 16, 8–14 (2015)
14

Hawass, Z. et al. First report: video survey of the southern shaft of the Queen’s chamber in the Great Pyramid. Ann. Serv. Antiq. Egypte 84, 203–216 (2010)
15

Richardson, R. et al. The “Djedi” robot exploration of the southern shaft of the Queen’s Chamber in the Great Pyramid of Giza, Egypt. J. Field Robot. 30, 323–348 (2013)
16

Tallet, P. Les Papyrus de la Mer Rouge 1 : Le “Journal de Merer” http://www.ifao.egnet.net/publications/catalogue/9782724707069/ (Institut Français d’Archéologie Orientale, 2017)
17

Bui, H. D. Imaging the Cheops Pyramid (Springer Science & Business Media, 2011)
18

Butler, D. K. Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 49, 1084–1096 (1984)
19

Yoshimura, S ., Nakagawa, T ., Tonouchi, S. & Seki, K. Non-destructive pyramid investigation. Parts 1 and 2. Stud. Egypt. Cult. 6 & 8, http://www.egyptpro.sci.waseda.ac.jp/pdf%20files/SEC06%20Pyramid%20Investigation1.pdf and http://www.egyptpro.sci.waseda.ac.jp/pdf%20files/SEC08%20Pyramid%20Investigation2.pdf (1987)
20

Morishima, K . et al. First demonstration of cosmic ray muon radiography of reactor cores with nuclear emulsion based on an automated high-speed scanning technology. Proc. 26th Worksh. on ‘Radiation Detectors and Their Uses’ 27–36, https://lib-extopc.kek.jp/preprints/PDF/2012/1225/1225008.pdf (2012)
21

Borozdin, K. N. et al. Surveillance: radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003)
22

Menichelli, M. et al. A scintillating fibres tracker detector for archaeological applications. Nucl. Instrum. Methods A 572, 262–265 (2007)
23

Saracino, G. et al. Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples). Sci. Rep. 7, 1181 (2017)
24

Menchaca-Rocha, A. Searching for cavities in the Teotihuacan Pyramid of the Sun using cosmic muons experiments and instrumentation. Int. Cosmic Ray Conf. 4, 325 (2011)
25

Yoshimoto, M., Nakano, T., Komatani, R. & Kawahara, H. Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters. Progr. Theor. Exp. Phys. 10, 103H01 (2017)
26

Morishima, K., Hamada, K., Komatani, R., Nakano, T. & Kodama, K. Development of an automated nuclear emulsion analyzing system. Radiat. Meas. 50, 237–240 (2013)
27

Hamada, K. et al. Comprehensive track reconstruction tool “NETSCAN 2.0” for the analysis of the OPERA Emulsion Cloud Chamber. J. Instrum. 7, P07001 (2012)
28

Agostinelli, S. et al. geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003)
29

Morishima, K. Latest developments in nuclear emulsion technology. Phys. Proc. 80, 19–24 (2015)
30

Nishio, A . et al. Long term property of nuclear emulsion. Progr. Proc. 1st Int. Conf. on ‘Advanced Imaging’ (ICAI2015) 668–671 (Imaging Society of Japan, 2015)
31

Aoki, S. et al. The fully automated emulsion analysis system. Nucl. Instrum. Methods B 51, 466–472 (1990)
32

Morishima, K. & Nakano, T. Development of a new automatic nuclear emulsion scanning system, S-UTS, with continuous 3D tomographic image read-out. J. Instrum. 5, P04011 (2010)
33

Miyake, S. Rapporteur paper on muons and neutrinos. 13th Int. ‘Cosmic Ray’ Conf. Vol. 5, 3638–3655 (1973)
34

Dormion, G. La Chambre de Cheops: Analyse Architecturale (Fayard, 2004)
35

Reyna, D. A simple parameterization of the cosmic-ray muon momentum spectra at the surface as a function of zenith angle. Preprint at https://arxiv.org/abs/hep-ph/0604145 (2006)
36

Jokisch, H., Carstensen, K., Dau, W., Meyer, H. & Allkofer, O. Cosmic-ray muon spectrum up to 1 TeV at 75 zenith angle. Phys. Rev. D 19, 1368 (1979)
37

Giomataris, I. Y., Rebourgeard, P., Robert, J. P. & Charpak, G. MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments. Nucl. Instrum. Methods A 376, 29–35 (1996)
38

Giomataris, I. Y. et al. Micromegas in a bulk. Nucl. Instrum. Methods A 560, 405–408 (2006)
39

Alexopoulos, T. et al. A spark-resistant bulk-micromegas chamber for high-rate applications. Nucl. Instrum. Methods A 640, 110–118 (2011)
40

Procureur, S ., Dupré, R. & Aune, S. Genetic multiplexing and first results with a 50 × 50 cm2 Micromegas. Nucl. Instrum. Methods A 729, 888–894 (2013)
41

Flouzat, C . et al. Dream: a 64-channel front-end chip with analogue trigger latency buffer for the Micromégas tracker of the CLAS12 experiment. Proc. TWEPP Conf. https://indico.cern.ch/event/299180/contributions/1659618/contribution.pdf (2014)
42

Brun, R. & Rademakers, F. ROOT—an object oriented data analysis framework. Nucl. Instrum. Methods A 389, 81–86 (1997)
43

Maragioglio, V. & Rinaldi, C. L’Architettura delle Piramidi Menfite. Parte IV, La Grande Piramide di Cheope (Rapallo, 1965)
44

Kraus, K. Photogrammetry: Geometry from Images and Laser Scans (Walter de Gruyter, 2007)
Search for Hidden Chambers in the Pyramids
By Luis W. Alvarez, Jared A. Anderson, F. El Bedwei, James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid, Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy, Ali Hilmy Moussa, Mohammed Sharkawi, Lauren Yazolino






Vol 167, Issue 3919
06 February 1970




24 January 2020

Vol 367, Issue 6476




Labels

https://ediobangers.blogspot.com/ AKA The Hidden Techno OG link

https://feeds.feedburner.com/blogspot/stoypm