Translate

30 Nov 2020

HUMAN DETECTION AND TRACKING WITH UWB RADAR 2019


Melika Hozhabri 

HUMAN DETECTION AND TRACKING WITH UWB RADAR 2019

Mälardalen University Licentiate Thesis 280

Human Detection and Tracking

with UWB radar

Melika Hozhabri

ISBN 978-91-7485-435-0

ISSN 1651-9256

Address: P.O. Box 883, SE-721 23 Västerås. Sweden

Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden

E-mail: info@mdh.se Web: www.mdh.se

M¨alardalen University Press Licentiate Thesis

No. 280

HUMAN DETECTION AND TRACKING

WITH UWB RADAR

Melika Hozhabri

2019

School of Innovation, Design and Engineering

M¨alardalen University Press Licentiate Thesis

No. 280

HUMAN DETECTION AND TRACKING

WITH UWB RADAR

Melika Hozhabri

2019

School of Innovation, Design and Engineering

1

Copyright © Melika Hozhabri, 2019

ISSN 1651-9256

ISBN 978-91-7485-435-0

Printed by E-Print AB, Stockholm, Sweden

Copyright © Melika Hozhabri, 2019

ISSN 1651-9256

ISBN 978-91-7485-435-0

Printed by E-Print AB, Stockholm, Sweden

2

To my family To my family

3

4

Abstract

As robots and automated machineries are increasingly replacing the

manual operations, protecting humans who are working in collaboration with these machines is becoming an increasingly important task.

Technologies such as cameras, infra-red and seismic sensors as well as

radar systems are used for presence detection and localization of human

beings. Among different radar sensors, Ultra Wide Band (UWB) radar

has shown some advantages such as providing the distance to the object

with good precision and high performance even under adverse weather

and lightning conditions. In contrary to traditional radar systems which

use a specific frequency and high output power, UWB Radar uses a

wide frequency band (> 500 MHz) and low output power to measure

the distance to the object.

The purpose of this thesis is to investigate UWB radar system for

protecting humans around dangerous machinery in environments like

mines where conditions like dirt, fog, and lack of light cause other technologies such as cameras to have a limited functionality. Experimental

measurements are done to validate the hardware and to investigate its

constraints.

Comparison between two dominant UWB radar technologies is performed: Pulse and M-sequence UWB radar for static human being detection. The results show that M-sequence UWB radar is better suited

for detecting the static human target at larger distances. The better

performance comes at the cost of higher power usage. Measurements of

human walking in different environments is done to measure and compare the background noise and radar reflection of the human body. A

human phantom is developed and choice of material and shape for it is

discussed. The reflection of the phantom is analyzed and compared with

the reflection of a human trunk. Furthermore, the choice of frequency

in discerning human beings is discussed.

Signal processing algorithms and filters are developed for tracking of

the human presence, position and movements. These algorithms contain

pre-processing of the signal such as removing the background, detection

and positioning techniques.

i

Abstract

As robots and automated machineries are increasingly replacing the

manual operations, protecting humans who are working in collaboration with these machines is becoming an increasingly important task.

Technologies such as cameras, infra-red and seismic sensors as well as

radar systems are used for presence detection and localization of human

beings. Among different radar sensors, Ultra Wide Band (UWB) radar

has shown some advantages such as providing the distance to the object

with good precision and high performance even under adverse weather

and lightning conditions. In contrary to traditional radar systems which

use a specific frequency and high output power, UWB Radar uses a

wide frequency band (> 500 MHz) and low output power to measure

the distance to the object.

The purpose of this thesis is to investigate UWB radar system for

protecting humans around dangerous machinery in environments like

mines where conditions like dirt, fog, and lack of light cause other technologies such as cameras to have a limited functionality. Experimental

measurements are done to validate the hardware and to investigate its

constraints.

Comparison between two dominant UWB radar technologies is performed: Pulse and M-sequence UWB radar for static human being detection. The results show that M-sequence UWB radar is better suited

for detecting the static human target at larger distances. The better

performance comes at the cost of higher power usage. Measurements of

human walking in different environments is done to measure and compare the background noise and radar reflection of the human body. A

human phantom is developed and choice of material and shape for it is

discussed. The reflection of the phantom is analyzed and compared with

the reflection of a human trunk. Furthermore, the choice of frequency

in discerning human beings is discussed.

Signal processing algorithms and filters are developed for tracking of

the human presence, position and movements. These algorithms contain

pre-processing of the signal such as removing the background, detection

and positioning techniques.

i

5

6

Sammandrag

I takt med att robotar och automatiska maskiner i ¨okande grad ers¨atter

manuella arbetsuppgifter, ¨okar behovet av skydd f¨or m¨anniskor som arbetar tillsammans med dessa maskiner. Teknologier s˚asom kameror, infrar¨oda och seismiska sensorer samt radarsystem anv¨ands f¨or n¨arvarodetektering och lokalisering av m¨anniskor. Bland olika radarsensorer har

Ultra Wide Band (UWB) radarn visat n˚agra f¨ordelar, s˚asom att ge avst˚and till objektet med god precision och h¨og prestanda ¨aven i ogynnsamma v¨ader- och ljush˚allanden. Till skillnad fr˚an traditionella radarsystem

som anv¨ander en specifik frekvens och h¨og uteffekt, anv¨ander UWB Radar ett brett frekvensband (> 500 MHz) och l˚ag uteffekt f¨or att m¨ata

avst˚and till objekt.

Syftet med den h¨ar avhandlingen ¨ar att anv¨anda UWB-radarsystem

f¨or att skydda m¨anniskor som vistas i n¨arhet av farliga maskiner i milj¨oer

som gruvor, d¨ar f¨orh˚allanden som smuts, dimma och brist p˚a ljus g¨or

att andra tekniker s˚asom kameror f˚ar en minskad funktionalitet. Experimentella m¨atningar g¨ors f¨or att validera h˚ardvaran och f¨or att unders¨oka

dess begr¨ansningar.

J¨amf¨orelse mellan tv˚a dominerande UWB-radarteknologier: Impuls

och M-sekvens UWB-radar f¨or statisk detektering av m¨anniska utf¨ors.

Resultaten visar att M-sekvensen UWB-radar ¨ar b¨attre l¨ampad f¨or att

detektera scenariot med statiska m¨anskliga m˚al p˚a st¨orre avst˚and. B¨attre

prestanda kr¨aver en h¨ogre str¨omf¨orbrukning. M¨atningar av m¨ansk-lig

g˚ang i olika milj¨oer g¨ors f¨or att m¨ata och j¨amf¨ora bakgrundsbrus och

radarreflektion av m¨anniskokroppen. En m¨ansklig modell utvecklas och

materialval och form diskuteras. Reflektionen fr˚an modellen analyseras

och j¨amf¨ors med reflektionen fr˚an en m¨ansklig b˚al. Vidare diskuteras

valet av frekvens f¨or s¨arskiljning av m¨anniskor.

Signalbehandlingsalgoritmer och filter utvecklas f¨or att sp˚ara m¨anniskans n¨arvaro, position och r¨orelser. Dessa algoritmer inneh˚aller f¨orbehandling av signalen s˚asom att eliminering av bakgrunden, detekterings och

positioneringstekniker.

iii

Sammandrag

I takt med att robotar och automatiska maskiner i ¨okande grad ers¨atter

manuella arbetsuppgifter, ¨okar behovet av skydd f¨or m¨anniskor som arbetar tillsammans med dessa maskiner. Teknologier s˚asom kameror, infrar¨oda och seismiska sensorer samt radarsystem anv¨ands f¨or n¨arvarodetektering och lokalisering av m¨anniskor. Bland olika radarsensorer har

Ultra Wide Band (UWB) radarn visat n˚agra f¨ordelar, s˚asom att ge avst˚and till objektet med god precision och h¨og prestanda ¨aven i ogynnsamma v¨ader- och ljush˚allanden. Till skillnad fr˚an traditionella radarsystem

som anv¨ander en specifik frekvens och h¨og uteffekt, anv¨ander UWB Radar ett brett frekvensband (> 500 MHz) och l˚ag uteffekt f¨or att m¨ata

avst˚and till objekt.

Syftet med den h¨ar avhandlingen ¨ar att anv¨anda UWB-radarsystem

f¨or att skydda m¨anniskor som vistas i n¨arhet av farliga maskiner i milj¨oer

som gruvor, d¨ar f¨orh˚allanden som smuts, dimma och brist p˚a ljus g¨or

att andra tekniker s˚asom kameror f˚ar en minskad funktionalitet. Experimentella m¨atningar g¨ors f¨or att validera h˚ardvaran och f¨or att unders¨oka

dess begr¨ansningar.

J¨amf¨orelse mellan tv˚a dominerande UWB-radarteknologier: Impuls

och M-sekvens UWB-radar f¨or statisk detektering av m¨anniska utf¨ors.

Resultaten visar att M-sekvensen UWB-radar ¨ar b¨attre l¨ampad f¨or att

detektera scenariot med statiska m¨anskliga m˚al p˚a st¨orre avst˚and. B¨attre

prestanda kr¨aver en h¨ogre str¨omf¨orbrukning. M¨atningar av m¨ansk-lig

g˚ang i olika milj¨oer g¨ors f¨or att m¨ata och j¨amf¨ora bakgrundsbrus och

radarreflektion av m¨anniskokroppen. En m¨ansklig modell utvecklas och

materialval och form diskuteras. Reflektionen fr˚an modellen analyseras

och j¨amf¨ors med reflektionen fr˚an en m¨ansklig b˚al. Vidare diskuteras

valet av frekvens f¨or s¨arskiljning av m¨anniskor.

Signalbehandlingsalgoritmer och filter utvecklas f¨or att sp˚ara m¨anniskans n¨arvaro, position och r¨orelser. Dessa algoritmer inneh˚aller f¨orbehandling av signalen s˚asom att eliminering av bakgrunden, detekterings och

positioneringstekniker.

iii

7

8

Acknowledgements

Finally I have reached this half way milestone. It was a stimulating, educating and exciting journey alongside feelings of frustration, confusion

and failures. But nothing worth having comes easy.

I would like to thank:

Bj¨orn, my wonderful and supportive partner. Putting up with me on

stressful days, nights, holidays and weekends with your amazing patience

and understanding. It would have not been possible without you.

My parents for supporting me through my education and believing

in me. Giving me all they could to support my interest in science and

technology.

My former manager Dag Lindahl that started this project with a

great vision and positiveness.

My supervisors, Maria Lind`en, Nikola Petrovi´c and Martin Ekstr¨om

for their help, support and comments during this thesis.

Per Olov Risman for his engagement and comments during this thesis.

I appreciate your knowledge, engagement and being available at any

time.

My colleagues and friends at MDH, Arash Gharebaghi for your support, help and comments, and Zeinab Bakhshi for your positive spirit.

ITS-EASY team Kristina Lundkvist, Radu Dobrin, Gunnar Widforss, and Malin Rosqvist for the great discussions, trips and support.

Addiva AB, Bj¨orn Lindstr¨om and my manager Rasmus Fridberg for

providing me this opportunity to learn and grow.

My colleagues at Addiva AB, Nils Brynedal Ignell, Olle Wedin, Ralf

Str¨omberg, Iryna Gusstavsson, and Simon Johansson for the great team

work, help, discussions and ideas.

My former colleagues at RISE SICS, Ali Balador who I have learned

a lot from during my research in SafePOS project, and Markus Bohlin

for the great inspiration you gave me during a short meeting.

All of my friends, the valuable treasure I have. For letting me know

that I have your help and support. Especial thanks to Ella for listening,

understanding and all the encouragements on daily basis.

At last, my son who shines like a sun and greets me with laughter

and hugs every day. You gives me a reason to carry on.

Melika Hozhabri, V¨aster˚as, September, 2019

Acknowledgements

Finally I have reached this half way milestone. It was a stimulating, educating and exciting journey alongside feelings of frustration, confusion

and failures. But nothing worth having comes easy.

I would like to thank:

Bj¨orn, my wonderful and supportive partner. Putting up with me on

stressful days, nights, holidays and weekends with your amazing patience

and understanding. It would have not been possible without you.

My parents for supporting me through my education and believing

in me. Giving me all they could to support my interest in science and

technology.

My former manager Dag Lindahl that started this project with a

great vision and positiveness.

My supervisors, Maria Lind`en, Nikola Petrovi´c and Martin Ekstr¨om

for their help, support and comments during this thesis.

Per Olov Risman for his engagement and comments during this thesis.

I appreciate your knowledge, engagement and being available at any

time.

My colleagues and friends at MDH, Arash Gharebaghi for your support, help and comments, and Zeinab Bakhshi for your positive spirit.

ITS-EASY team Kristina Lundkvist, Radu Dobrin, Gunnar Widforss, and Malin Rosqvist for the great discussions, trips and support.

Addiva AB, Bj¨orn Lindstr¨om and my manager Rasmus Fridberg for

providing me this opportunity to learn and grow.

My colleagues at Addiva AB, Nils Brynedal Ignell, Olle Wedin, Ralf

Str¨omberg, Iryna Gusstavsson, and Simon Johansson for the great team

work, help, discussions and ideas.

My former colleagues at RISE SICS, Ali Balador who I have learned

a lot from during my research in SafePOS project, and Markus Bohlin

for the great inspiration you gave me during a short meeting.

All of my friends, the valuable treasure I have. For letting me know

that I have your help and support. Especial thanks to Ella for listening,

understanding and all the encouragements on daily basis.

At last, my son who shines like a sun and greets me with laughter

and hugs every day. You gives me a reason to carry on.

Melika Hozhabri, V¨aster˚as, September, 2019

9

10

Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 UWB Radar System . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Hardware Platform . . . . . . . . . . . . . . . . . . 9

2.2.2 Ultra Wide-band Antennas . . . . . . . . . . . . . 9

2.3 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Clutter Removal . . . . . . . . . . . . . . . . . . . 11

2.3.2 Detection . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Localization . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Human Radar Cross Section . . . . . . . . . . . . . . . . . 14

2.5 Related Experimental Systems . . . . . . . . . . . . . . . 15

2.5.1 Systems for Human Detection in LOS . . . . . . . 15

2.5.2 Systems for Human Detection Behind Obstacles . 18

3 System Design and Validation 22

3.1 Software Platform Design . . . . . . . . . . . . . . . . . . 22

3.2 System Validation and Measurements . . . . . . . . . . . 23

3.2.1 The Vivaldi Antenna Radiation Pattern Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Comparison of M-sequence vs Pulse radar for Static

Human Detection (Paper A) . . . . . . . . . . . . 27

vii

Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 UWB Radar System . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Hardware Platform . . . . . . . . . . . . . . . . . . 9

2.2.2 Ultra Wide-band Antennas . . . . . . . . . . . . . 9

2.3 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Clutter Removal . . . . . . . . . . . . . . . . . . . 11

2.3.2 Detection . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Localization . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Human Radar Cross Section . . . . . . . . . . . . . . . . . 14

2.5 Related Experimental Systems . . . . . . . . . . . . . . . 15

2.5.1 Systems for Human Detection in LOS . . . . . . . 15

2.5.2 Systems for Human Detection Behind Obstacles . 18

3 System Design and Validation 22

3.1 Software Platform Design . . . . . . . . . . . . . . . . . . 22

3.2 System Validation and Measurements . . . . . . . . . . . 23

3.2.1 The Vivaldi Antenna Radiation Pattern Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Comparison of M-sequence vs Pulse radar for Static

Human Detection (Paper A) . . . . . . . . . . . . 27

vii

11

viii Contents

3.2.3 Walking Human Detection in Different Environments (Paper B) . . . . . . . . . . . . . . . . . . . 27

3.2.4 Respiration Simulation and Measurement . . . . . 28

3.2.5 Phantom Measurements (Paper C) . . . . . . . . . 29

3.3 Signal Processing Algorithms . . . . . . . . . . . . . . . . 31

3.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Clutter Removal . . . . . . . . . . . . . . . . . . . 32

3.3.3 Target detection . . . . . . . . . . . . . . . . . . . 34

3.3.4 Target Tracking . . . . . . . . . . . . . . . . . . . 35

3.3.5 Other Algorithms . . . . . . . . . . . . . . . . . . . 36

4 Contribution 38

5 Conclusion and Future Work 41

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 42

A Abbrevations 44

Bibliography 47

viii Contents

3.2.3 Walking Human Detection in Different Environments (Paper B) . . . . . . . . . . . . . . . . . . . 27

3.2.4 Respiration Simulation and Measurement . . . . . 28

3.2.5 Phantom Measurements (Paper C) . . . . . . . . . 29

3.3 Signal Processing Algorithms . . . . . . . . . . . . . . . . 31

3.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Clutter Removal . . . . . . . . . . . . . . . . . . . 32

3.3.3 Target detection . . . . . . . . . . . . . . . . . . . 34

3.3.4 Target Tracking . . . . . . . . . . . . . . . . . . . 35

3.3.5 Other Algorithms . . . . . . . . . . . . . . . . . . . 36

4 Contribution 38

5 Conclusion and Future Work 41

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 42

A Abbrevations 44

Bibliography 47

12

Chapter 1

Introduction

Human-machine interaction is becoming more important because of its

potential military, safety, security, and entertainment applications. The

manual operating machines are getting replaced with robots and automated machineries and humans needs to be able to safely work in collaboration with them. Furthermore, the emerging market for autonomous

vehicles demands reliable pedestrian detection and localization. Meanwhile recent advances in technology makes it possible to detect, localize

and respond to the presence of a human. Techniques such as Global

Positioning System (GPS), infrared detectors, vision based systems, vibration and seismic sensors, acoustics sensors, and radar systems are

used to achieve human detection and localization.

Among different radar sensors, Ultra Wide Band (UWB) radar offers

high-resolution ranging in dynamic environments, low power consumption and high performance in multipath channel without requiring Line

Of Sight (LOS).

Several efforts by different research groups have been performed within

the domain of detecting human targets with UWB radar [1–4]. UWB

radar has the capability to penetrate most common building materials,

therefore many researchers aim at detection and tracking of humans behind walls for surveillance and rescue operations [5–9].

In this thesis, UWB radar is used for detection, localization, and

tracking of humans to provide reliable pedestrian safety in the presence

of moving machines. The UWB radar system constraints and capabilities

are examined by performing measurements in different environments and

1

Chapter 1

Introduction

Human-machine interaction is becoming more important because of its

potential military, safety, security, and entertainment applications. The

manual operating machines are getting replaced with robots and automated machineries and humans needs to be able to safely work in collaboration with them. Furthermore, the emerging market for autonomous

vehicles demands reliable pedestrian detection and localization. Meanwhile recent advances in technology makes it possible to detect, localize

and respond to the presence of a human. Techniques such as Global

Positioning System (GPS), infrared detectors, vision based systems, vibration and seismic sensors, acoustics sensors, and radar systems are

used to achieve human detection and localization.

Among different radar sensors, Ultra Wide Band (UWB) radar offers

high-resolution ranging in dynamic environments, low power consumption and high performance in multipath channel without requiring Line

Of Sight (LOS).

Several efforts by different research groups have been performed within

the domain of detecting human targets with UWB radar [1–4]. UWB

radar has the capability to penetrate most common building materials,

therefore many researchers aim at detection and tracking of humans behind walls for surveillance and rescue operations [5–9].

In this thesis, UWB radar is used for detection, localization, and

tracking of humans to provide reliable pedestrian safety in the presence

of moving machines. The UWB radar system constraints and capabilities

are examined by performing measurements in different environments and

1

13

2 Chapter 1. Introduction

set-ups. The measurements were later processed by signal processing

algorithms to extract the human target signal.

1.1 Motivation

Safety is an important consideration in human-machine interactions. Industrial machines can move or have moving parts that can cause hazards

to humans surrounding them. Hazardous industrial machines and operators are sometimes separated by barriers to avoid any contact between

them and as a consequence the productivity of the site is reduced [10].

Most state of the art machineries and robots are equipped with sensors

for collision avoidance such as laser scanners, cameras, and infrared sensors [11]. These systems are used for detection of objects and obstacles,

their position, and their relative speed to the machine or robot [10].

They are performing reliably in some conditions but suffer from a number of limitations because of the optical technology they rely on. Some

factors such as large open areas, fog, smoke, dust, dirt, condensation,

lighting conditions, and reflections may cause faulty sensor values. In

addition, visual, infrared, and seismic sensors need to be placed in close

proximity to the target whereas radar sensors depend on the frequency

of the operation and can function up to several hundred meters.

1.2 Problem Formulation

The purpose of this research is to develop a system for protecting humans around hazardous machinery in environments such as mines where

conditions such as dirt, fog and lack of light cause problems with other

technologies. This feature is needed in industries where safety requirements around automatic machineries are getting more stringent. The

research goal for this thesis is:

”To evaluate a wireless system and to develop signal processing algorithms able to detect and localize humans in enclosed environments.”

This general goal can be split up into the following research questions.

RQ1 What are the UWB radar system characteristics and constraints in human detection applications?

The system needs to be carefully analysed with regard to its throughput and its limitations. Signal and noise characteristics need to

2 Chapter 1. Introduction

set-ups. The measurements were later processed by signal processing

algorithms to extract the human target signal.

1.1 Motivation

Safety is an important consideration in human-machine interactions. Industrial machines can move or have moving parts that can cause hazards

to humans surrounding them. Hazardous industrial machines and operators are sometimes separated by barriers to avoid any contact between

them and as a consequence the productivity of the site is reduced [10].

Most state of the art machineries and robots are equipped with sensors

for collision avoidance such as laser scanners, cameras, and infrared sensors [11]. These systems are used for detection of objects and obstacles,

their position, and their relative speed to the machine or robot [10].

They are performing reliably in some conditions but suffer from a number of limitations because of the optical technology they rely on. Some

factors such as large open areas, fog, smoke, dust, dirt, condensation,

lighting conditions, and reflections may cause faulty sensor values. In

addition, visual, infrared, and seismic sensors need to be placed in close

proximity to the target whereas radar sensors depend on the frequency

of the operation and can function up to several hundred meters.

1.2 Problem Formulation

The purpose of this research is to develop a system for protecting humans around hazardous machinery in environments such as mines where

conditions such as dirt, fog and lack of light cause problems with other

technologies. This feature is needed in industries where safety requirements around automatic machineries are getting more stringent. The

research goal for this thesis is:

”To evaluate a wireless system and to develop signal processing algorithms able to detect and localize humans in enclosed environments.”

This general goal can be split up into the following research questions.

RQ1 What are the UWB radar system characteristics and constraints in human detection applications?

The system needs to be carefully analysed with regard to its throughput and its limitations. Signal and noise characteristics need to

14

1.3 Research Method 3

be obtained by carefully planned measurements in different environments. Furthermore, understanding the characteristics of the

background noise will help to know how much it will affect the

signal detection.

RQ2 What are the most appropriate signal processing algorithms to be used for detection of humans, using the chosen sensor system?

To be able to extract the human target signal, raw radar data

passes several signal-processing steps. This signal usually is affected by noise, clutter and attenuation. Signal processing algorithms and their order affect the processing power and computational complexity. There are some decisions to be made such

as what and how many features that should be extracted. The

algorithms should also be examined for false alarms and missed

detection.

RQ3 Is it possible to make a phantom of a human in order to

obtain controlled conditions in measurements?

In measurement of real humans, the results may vary based on

the body size, orientation, posture, and clothing. Performing measurements with a phantom of human body reduces the unwanted

variabilities of real human measurements. Which material combinations and geometry can mimic a radar cross section of a human?

1.3 Research Method

This work started by a thorough literature review in order to gain knowledge about the state of the art and to recognize the requirements and

challenges. In addition, collaborations between Addiva AB and industrial partners in robotics and mining industry helped us to achieve a

better understanding of the real world challenges that each particular

industry is facing. One prerequisite of the work was to use an already

existing hardware system for the UWB radar. A part of this research is

about understanding the hardware, its advantages and limitations.

The research method used in this thesis is based on the experimental

results lead to validating the theory. Series of experiments are performed

and collected data are analyzed. This resulted in scientific papers and

1.3 Research Method 3

be obtained by carefully planned measurements in different environments. Furthermore, understanding the characteristics of the

background noise will help to know how much it will affect the

signal detection.

RQ2 What are the most appropriate signal processing algorithms to be used for detection of humans, using the chosen sensor system?

To be able to extract the human target signal, raw radar data

passes several signal-processing steps. This signal usually is affected by noise, clutter and attenuation. Signal processing algorithms and their order affect the processing power and computational complexity. There are some decisions to be made such

as what and how many features that should be extracted. The

algorithms should also be examined for false alarms and missed

detection.

RQ3 Is it possible to make a phantom of a human in order to

obtain controlled conditions in measurements?

In measurement of real humans, the results may vary based on

the body size, orientation, posture, and clothing. Performing measurements with a phantom of human body reduces the unwanted

variabilities of real human measurements. Which material combinations and geometry can mimic a radar cross section of a human?

1.3 Research Method

This work started by a thorough literature review in order to gain knowledge about the state of the art and to recognize the requirements and

challenges. In addition, collaborations between Addiva AB and industrial partners in robotics and mining industry helped us to achieve a

better understanding of the real world challenges that each particular

industry is facing. One prerequisite of the work was to use an already

existing hardware system for the UWB radar. A part of this research is

about understanding the hardware, its advantages and limitations.

The research method used in this thesis is based on the experimental

results lead to validating the theory. Series of experiments are performed

and collected data are analyzed. This resulted in scientific papers and

15

4 Chapter 1. Introduction

better understanding of the system. This has been an iterative process

as each result led to more knowledge which in turn resulted in new

literature studies and set of experiments.1

During the experimental research process, the system characteristics

is thoroughly investigated and measured. This includes investigating the

ability of the sensor to detect static and dynamic humans and to measure

the effect of the environment noise on the signal detection. Thereafter,

suitable signal processing algorithms are developed and implemented.

1This research is partly financed by Vinnova: Diarienummer 2014-00484

4 Chapter 1. Introduction

better understanding of the system. This has been an iterative process

as each result led to more knowledge which in turn resulted in new

literature studies and set of experiments.1

During the experimental research process, the system characteristics

is thoroughly investigated and measured. This includes investigating the

ability of the sensor to detect static and dynamic humans and to measure

the effect of the environment noise on the signal detection. Thereafter,

suitable signal processing algorithms are developed and implemented.

1This research is partly financed by Vinnova: Diarienummer 2014-00484

16

Chapter 2

Related Work

This chapter presents an overview of related research in the area of human detection and tracking with UWB radar. Firstly, a background of

human detection and tracking with UWB radar is presented. Thereafter

follows a short introduction of UWB radar systems, signal processing

steps, and a brief explanation of human radar cross section. Finally,

experimental systems using UWB radar for human presence detection

and localization are presented. Table 2.1 summarizes these systems, including their properties as accuracy, hardware, measurement set-up and

signal processing methods.

2.1 Background

Human detection and tracking consists of measuring spatio-temporal

properties of humans such as presence, count, location, track, and identity [12]. Measurable human traits with UWB radar are shown in Figure

2.1. By using UWB radar, the Radar Cross Section (RCS) (see section

2.4) of a human body and external body-part motions such as walking

and hands and feet movements can be detected. Also internal body-part

motions, for example involuntary motion of internal organs such as heart

beat and respiration, can be measured.

UWB radar was used for human detection in LOS [3, 13, 14] as well

as detection of humans behind obstacles and walls due to its capability

to penetrate most common building materials [4, 6–8]. Both methods

require signal processing algorithms and techniques for human detection,

5

Chapter 2

Related Work

This chapter presents an overview of related research in the area of human detection and tracking with UWB radar. Firstly, a background of

human detection and tracking with UWB radar is presented. Thereafter

follows a short introduction of UWB radar systems, signal processing

steps, and a brief explanation of human radar cross section. Finally,

experimental systems using UWB radar for human presence detection

and localization are presented. Table 2.1 summarizes these systems, including their properties as accuracy, hardware, measurement set-up and

signal processing methods.

2.1 Background

Human detection and tracking consists of measuring spatio-temporal

properties of humans such as presence, count, location, track, and identity [12]. Measurable human traits with UWB radar are shown in Figure

2.1. By using UWB radar, the Radar Cross Section (RCS) (see section

2.4) of a human body and external body-part motions such as walking

and hands and feet movements can be detected. Also internal body-part

motions, for example involuntary motion of internal organs such as heart

beat and respiration, can be measured.

UWB radar was used for human detection in LOS [3, 13, 14] as well

as detection of humans behind obstacles and walls due to its capability

to penetrate most common building materials [4, 6–8]. Both methods

require signal processing algorithms and techniques for human detection,

5

17

6 Chapter 2. Related Work

Figure 2.1: Measurable human traits with UWB radar.

and the through wall detection requires additional algorithms for clutter

removal due to the existence of the obstacle or wall. The wall distorts

the radar signature in form of attenuation, refraction, and multipath,

therefore the wall effect must be compensated for by using the known

parameters such as thickness and relative permittivity of the wall. This

thesis focuses on detecting human beings in LOS with UWB Radar in

cluttered environments.

2.2 UWB Radar System

Based on the definition by the US Federal Communications Commission’s (FCC), a signal can be defined as an UWB signal if its bandwidth

is greater than 500 MHz or its fractional bandwidth is greater than 0.2

where fractional bandwidth is defined in equation 2.1.

Bf = 2

fH − fL

fH + fL

(2.1)

Different types of UWB radar are developed and based on the excitation wave-form they are divided into different categories. Three of the

most prominent categories are Frequency Modulated Continuous Wave

(FMCW) UWB radar, pulse UWB radar, and M-sequence UWB radar.

6 Chapter 2. Related Work

Figure 2.1: Measurable human traits with UWB radar.

and the through wall detection requires additional algorithms for clutter

removal due to the existence of the obstacle or wall. The wall distorts

the radar signature in form of attenuation, refraction, and multipath,

therefore the wall effect must be compensated for by using the known

parameters such as thickness and relative permittivity of the wall. This

thesis focuses on detecting human beings in LOS with UWB Radar in

cluttered environments.

2.2 UWB Radar System

Based on the definition by the US Federal Communications Commission’s (FCC), a signal can be defined as an UWB signal if its bandwidth

is greater than 500 MHz or its fractional bandwidth is greater than 0.2

where fractional bandwidth is defined in equation 2.1.

Bf = 2

fH − fL

fH + fL

(2.1)

Different types of UWB radar are developed and based on the excitation wave-form they are divided into different categories. Three of the

most prominent categories are Frequency Modulated Continuous Wave

(FMCW) UWB radar, pulse UWB radar, and M-sequence UWB radar.

18

2.2 UWB Radar System 7

Figure 2.2: A basic scheme of an M-sequence radar [15].

In this thesis, we have used a commercially available M-sequence UWB

radar which has been developed by Radarbolaget (G¨avle, Sweden). The

company is primarily working with radar systems for real time, and

through-the-wall monitoring of furnaces1

.

A basic scheme of a M-sequence UWB radar is shown in Figure 2.2.

This system were chosen for its flexibility and scalability. The radar

system is coded on a FPGA, therefore it is possible to change its design

on demand, which makes it flexible. Another advantage is the scalability

which allows connection of up to twelve antenna pair sensors to the

system.

Data Representation

The radar system is able to record hundreds of scans per second. Theses

recorded scans can be presented as radar return at a certain time as it

is shown in Figure 2.3. The horizontal axis represents the time of flight,

which is twice the distance to the object in detection region of the radar.

The vertical axis represents the correlation of received and transmitted

signal in the RPU. The distance between two adjacent measurement

points in horizontal axis is 22367.7 ns corresponds to 4166.7 µm. The

radar scans can be stacked along the time axis. This results in a twodimensional graph, which is called a radargram. The structure of the

radargram is shown in Figure 2.4.

1http://www.radarbolaget.com

2.2 UWB Radar System 7

Figure 2.2: A basic scheme of an M-sequence radar [15].

In this thesis, we have used a commercially available M-sequence UWB

radar which has been developed by Radarbolaget (G¨avle, Sweden). The

company is primarily working with radar systems for real time, and

through-the-wall monitoring of furnaces1

.

A basic scheme of a M-sequence UWB radar is shown in Figure 2.2.

This system were chosen for its flexibility and scalability. The radar

system is coded on a FPGA, therefore it is possible to change its design

on demand, which makes it flexible. Another advantage is the scalability

which allows connection of up to twelve antenna pair sensors to the

system.

Data Representation

The radar system is able to record hundreds of scans per second. Theses

recorded scans can be presented as radar return at a certain time as it

is shown in Figure 2.3. The horizontal axis represents the time of flight,

which is twice the distance to the object in detection region of the radar.

The vertical axis represents the correlation of received and transmitted

signal in the RPU. The distance between two adjacent measurement

points in horizontal axis is 22367.7 ns corresponds to 4166.7 µm. The

radar scans can be stacked along the time axis. This results in a twodimensional graph, which is called a radargram. The structure of the

radargram is shown in Figure 2.4.

1http://www.radarbolaget.com

19

8 Chapter 2. Related Work

Figure 2.3: Radar return signal. The first peak represents the antenna

cross talk (mutual coupling) and the second peak is an object reflection

which is in detection region of the radar

Figure 2.4: Radargram structure: Each raw (T11 to T1m) represents the

radar return signal in a fast time. The radar return signals are stacked

along n rows in slow time. ∆d represents the distance between two

consecutive samples of radar return that specifies the range resolution.

8 Chapter 2. Related Work

Figure 2.3: Radar return signal. The first peak represents the antenna

cross talk (mutual coupling) and the second peak is an object reflection

which is in detection region of the radar

Figure 2.4: Radargram structure: Each raw (T11 to T1m) represents the

radar return signal in a fast time. The radar return signals are stacked

along n rows in slow time. ∆d represents the distance between two

consecutive samples of radar return that specifies the range resolution.

20

2.2 UWB Radar System 9

2.2.1 Hardware Platform

The M-sequence UWB radar from Radarbolaget is shown in figure 2.5.

The hardware platform consists of a Radar Processing Unit (RPU), a

Wide-band Radar Transceiver (WRT) and a pair of Vivaldi antennas.

The RPU is responsible for processing and synchronization of radar signals. The WRT is a device that converts the radar signals and directs

them to the RPU. One of the Vivaldi antennas are acting as a transmitter, sending the M-sequence code, while the other antenna is receiving

the reflected signal and at the same time the signal is AD-converted by

an AD-converter in the antenna. There is also a data switch that keeps

track of and addresses each antenna. To each WRT, two to twelve antenna pairs can be coupled. The transmit gain is adjustable and has a

maximum value of −10 dBm and the radar bandwidth is approximately

2 GHz (1–3 GHz). For more detailed hardware description see Radarbolaget’s website 2 and paper A. The WRT and RPU are placed in a

computer case for easier supply of power and handling. The WRT and

RPU are connected to each other with an optical fiber. The RPU is

connected with an USB connection to the PC. The antenna casing is

entirely plastic and manufactured by a 3D printer.

2.2.2 Ultra Wide-band Antennas

An UWB radar system requires an antenna capable of receiving a wide

frequency range at the same time. Thus, the antenna behavior and

performance must be consistent and predictable across the entire bandwidth. Ideally, pattern and matching should be stable across the entire

band width and the antenna should preferably has a fixed phase center [16]. Furthermore, the frequency-dependent characteristics of the antennas and the time-domain effects and properties have to be known [17].

There are different types of antennas used in UWB systems such

as traveling-wave structures, frequency-independent antennas, multiple

resonance antennas, and electrically small antennas.

Vivaldi Antenna

There exists several types of UWB antennas for different UWB applications. In telecommunication applications, omni-directional antennas are

2https://www.radarbolaget.com/

2.2 UWB Radar System 9

2.2.1 Hardware Platform

The M-sequence UWB radar from Radarbolaget is shown in figure 2.5.

The hardware platform consists of a Radar Processing Unit (RPU), a

Wide-band Radar Transceiver (WRT) and a pair of Vivaldi antennas.

The RPU is responsible for processing and synchronization of radar signals. The WRT is a device that converts the radar signals and directs

them to the RPU. One of the Vivaldi antennas are acting as a transmitter, sending the M-sequence code, while the other antenna is receiving

the reflected signal and at the same time the signal is AD-converted by

an AD-converter in the antenna. There is also a data switch that keeps

track of and addresses each antenna. To each WRT, two to twelve antenna pairs can be coupled. The transmit gain is adjustable and has a

maximum value of −10 dBm and the radar bandwidth is approximately

2 GHz (1–3 GHz). For more detailed hardware description see Radarbolaget’s website 2 and paper A. The WRT and RPU are placed in a

computer case for easier supply of power and handling. The WRT and

RPU are connected to each other with an optical fiber. The RPU is

connected with an USB connection to the PC. The antenna casing is

entirely plastic and manufactured by a 3D printer.

2.2.2 Ultra Wide-band Antennas

An UWB radar system requires an antenna capable of receiving a wide

frequency range at the same time. Thus, the antenna behavior and

performance must be consistent and predictable across the entire bandwidth. Ideally, pattern and matching should be stable across the entire

band width and the antenna should preferably has a fixed phase center [16]. Furthermore, the frequency-dependent characteristics of the antennas and the time-domain effects and properties have to be known [17].

There are different types of antennas used in UWB systems such

as traveling-wave structures, frequency-independent antennas, multiple

resonance antennas, and electrically small antennas.

Vivaldi Antenna

There exists several types of UWB antennas for different UWB applications. In telecommunication applications, omni-directional antennas are

2https://www.radarbolaget.com/

21

10 Chapter 2. Related Work

Figure 2.5: UWB radar measurement system: The WRT and RPU in

a PC housing.

preferred, but in detection and positioning applications, directive UWB

antennas are used. The antenna in the current system is an antipodal

Vivaldi antenna from Radarbolaget, which has been developed by empirical testing, and therefore the design is not parameterized [18]. The

Vivaldi antenna has advantages over other types of UWB antennas, such

as horn antenna and log periodic array, due to its high directivity, large

bandwidth, small group delay and low cost of manufacturing (it is easy

to fabricate the antenna on a circuit board).

In this thesis a pair of Vivaldi antennas developed in the University

of G¨avle are used in the radar system. The Vivaldi antenna guides the

wave from the feed in a slot line to the exponential wide-band taper which

radiates all the frequencies of the entire bandwidth. The taper shape can

be designed so it provides a smooth transition of the guided wave into the

free space. The Vivaldi antenna has relatively low distortion compared

to other UWB antennas.

10 Chapter 2. Related Work

Figure 2.5: UWB radar measurement system: The WRT and RPU in

a PC housing.

preferred, but in detection and positioning applications, directive UWB

antennas are used. The antenna in the current system is an antipodal

Vivaldi antenna from Radarbolaget, which has been developed by empirical testing, and therefore the design is not parameterized [18]. The

Vivaldi antenna has advantages over other types of UWB antennas, such

as horn antenna and log periodic array, due to its high directivity, large

bandwidth, small group delay and low cost of manufacturing (it is easy

to fabricate the antenna on a circuit board).

In this thesis a pair of Vivaldi antennas developed in the University

of G¨avle are used in the radar system. The Vivaldi antenna guides the

wave from the feed in a slot line to the exponential wide-band taper which

radiates all the frequencies of the entire bandwidth. The taper shape can

be designed so it provides a smooth transition of the guided wave into the

free space. The Vivaldi antenna has relatively low distortion compared

to other UWB antennas.

22

2.3 Signal Processing 11

Figure 2.6: UWB Radar Signal Processing Steps.

2.3 Signal Processing

Rovaˇnkov´a and Kocur [19] presented UWB radar signal processing steps

for human detection and tracking. The different signal processing steps

are presented in Figure 2.6. The signal processing algorithms that are

implemented and used in this thesis are presented in chapter 3.

2.3.1 Clutter Removal

Clutter is an unwanted radar return signals. The goal of this thesis is

to develop a system for human detection which eventually will be used

in highly cluttered environments such as mines, which requires that the

effect of clutter on the detected signal to be investigated. Clutter contains the antenna cross-talk (A direct wave propagating from the transmitter antenna Tx directly to the receiver antenna Rx) and reflections

from other objects than the human in the scenario, such as walls and

machineries. Sources of clutter can also be out-of-band interfering signals at frequencies other than dedicated bandwidth for the system or

in-band interference and thermal noise. Out-of-band interference can be

detected and removed by traditional techniques such as Fourier transformation and band-pass filtering. In-band interference and thermal noise

are harder to identify and remove. Clutter can affect the probability

of detection and the accuracy. To understand and quantify clutter, the

statistical properties of the clutter are often used. A statistical radar

clutter model for modern high resolution radars is presented in [20].

Densities such as Weibull or log-normal distributions were shown to provide reasonable fits for measured clutter densities. In equation [2.2] the

Probability Density Function (PDF) of log normal distribution is shown.

fX(x; µ, σ) = 1

xσ√

e

(ln x−µ)

2

2σ2 , x > 0 (2.2)

2.3 Signal Processing 11

Figure 2.6: UWB Radar Signal Processing Steps.

2.3 Signal Processing

Rovaˇnkov´a and Kocur [19] presented UWB radar signal processing steps

for human detection and tracking. The different signal processing steps

are presented in Figure 2.6. The signal processing algorithms that are

implemented and used in this thesis are presented in chapter 3.

2.3.1 Clutter Removal

Clutter is an unwanted radar return signals. The goal of this thesis is

to develop a system for human detection which eventually will be used

in highly cluttered environments such as mines, which requires that the

effect of clutter on the detected signal to be investigated. Clutter contains the antenna cross-talk (A direct wave propagating from the transmitter antenna Tx directly to the receiver antenna Rx) and reflections

from other objects than the human in the scenario, such as walls and

machineries. Sources of clutter can also be out-of-band interfering signals at frequencies other than dedicated bandwidth for the system or

in-band interference and thermal noise. Out-of-band interference can be

detected and removed by traditional techniques such as Fourier transformation and band-pass filtering. In-band interference and thermal noise

are harder to identify and remove. Clutter can affect the probability

of detection and the accuracy. To understand and quantify clutter, the

statistical properties of the clutter are often used. A statistical radar

clutter model for modern high resolution radars is presented in [20].

Densities such as Weibull or log-normal distributions were shown to provide reasonable fits for measured clutter densities. In equation [2.2] the

Probability Density Function (PDF) of log normal distribution is shown.

fX(x; µ, σ) = 1

xσ√

e

(ln x−µ)

2

2σ2 , x > 0 (2.2)

23

12 Chapter 2. Related Work

where µ and σ are the mean and standard deviation of the variable x

natural logarithm respectively. The variable x is the value of the clutter

at every point in radar return echo signal. In this thesis, the result of

log-normal fit of the clutter distribution in a semi-anechoic chamber and

the office is presented and compared.

Clutter removal techniques have different complexity based on application, speed, accuracy, and memory requirement. One common method

concerning detection of static objects is background removal. In this

method a radar measurement of the background, before the object of interest is placed in radar detection region, is removed from the raw radar

data after the object is placed in the radar detection region [21]. This

method has a drawback since it does not consider the shadowing phenomena. Shadowing means that the existence of the object will change

the reflection from all the other objects in the scenario.

Exponential averaging is another clutter removal method used with

moving objects. This has advantages such as low complexity and good

performance [6]. In this thesis an exponential algorithm is implemented

and used for detection of dynamic humans. This algorithm is described

in more detail in section 3.3.2.

2.3.2 Detection

In the detection step a decision is being made by the detection algorithm

whether if the signal scattered from the target is absent or present in

the radar data.

Based on Figure 2.1 the human can be detected by UWB radar either

by the motion or RCS. A moving person causes a frequency shift in the

radar echo signal due to Doppler effect. However, humans have other

vibrations and rotations such as swing of the arms while walking. These

micro scale movements produce additional Doppler shifts, referred to

as micro-Doppler effect. Micro-Doppler processing can detect periodic

motions such as movement of arms and legs or respiration [22].

UWB radar provides high-resolution range profile as well as high resolution Doppler spectra therefore it is a good candidate for measurement

of periodic movements of the human body. If there are other moving

objects in detection region of the radar the detection will be more demanding and there will be a need for object recognition afterwards.

V.Chen [23] discussed the radar back-scattering from a walking human model. Based on the model a motion trajectory and velocity pattern

12 Chapter 2. Related Work

where µ and σ are the mean and standard deviation of the variable x

natural logarithm respectively. The variable x is the value of the clutter

at every point in radar return echo signal. In this thesis, the result of

log-normal fit of the clutter distribution in a semi-anechoic chamber and

the office is presented and compared.

Clutter removal techniques have different complexity based on application, speed, accuracy, and memory requirement. One common method

concerning detection of static objects is background removal. In this

method a radar measurement of the background, before the object of interest is placed in radar detection region, is removed from the raw radar

data after the object is placed in the radar detection region [21]. This

method has a drawback since it does not consider the shadowing phenomena. Shadowing means that the existence of the object will change

the reflection from all the other objects in the scenario.

Exponential averaging is another clutter removal method used with

moving objects. This has advantages such as low complexity and good

performance [6]. In this thesis an exponential algorithm is implemented

and used for detection of dynamic humans. This algorithm is described

in more detail in section 3.3.2.

2.3.2 Detection

In the detection step a decision is being made by the detection algorithm

whether if the signal scattered from the target is absent or present in

the radar data.

Based on Figure 2.1 the human can be detected by UWB radar either

by the motion or RCS. A moving person causes a frequency shift in the

radar echo signal due to Doppler effect. However, humans have other

vibrations and rotations such as swing of the arms while walking. These

micro scale movements produce additional Doppler shifts, referred to

as micro-Doppler effect. Micro-Doppler processing can detect periodic

motions such as movement of arms and legs or respiration [22].

UWB radar provides high-resolution range profile as well as high resolution Doppler spectra therefore it is a good candidate for measurement

of periodic movements of the human body. If there are other moving

objects in detection region of the radar the detection will be more demanding and there will be a need for object recognition afterwards.

V.Chen [23] discussed the radar back-scattering from a walking human model. Based on the model a motion trajectory and velocity pattern

24

2.3 Signal Processing 13

of the human body parts was derived. The time-frequency transform of

the signal was then analyzed to derive the micro-Doppler signature of human movement and complex arm and motion movements were analyzed.

The simulated micro-Doppler signature was verified by a measurement

by a X-band (8–12 GHz) radar. Micro-Doppler signature of the human

by UWB radar was presented in [22].

Another solution for detection application is using statistic theories to

test the suggested target against a threshold. For UWB radar detection

applications, methods such as fixed threshold and Constant False Alarm

Rate detectors (CFAR) are proposed [24].

2.3.3 Localization

Electromagnetic (EM) waves propagate in vacuum at the speed of light

(∼ 3 × 108 m/s). The transmitted wave is propagating through some

media that can be the air, cloths or rainfalls. The media affects the

propagation speed of EM waves, but these effects are quite small in

frequencies bellow 10 GHz so they can be disregarded [25]. To calculate

the distance to the target equation 2.3 is used.

Distance to the target = T OA ∗ C0

2

(2.3)

where C0 is the speed of light in vacuum and Time Of Arrival (TOA)

of the detected target is the time that it takes for the electromagnetic

waves to travel from the transmitter to the target and scattered back

again to the receiver.

2.3.4 Tracking

Tracking algorithms are often used to increase the precision of the localization results for moving targets. Most of the tracking algorithms

can make an educated guess about target’s next position and reduce the

measurements uncertainty and smoothen the target trajectory. Kalman

filter, linear least square and particle filter are widely used for this application [26, 27].

2.3 Signal Processing 13

of the human body parts was derived. The time-frequency transform of

the signal was then analyzed to derive the micro-Doppler signature of human movement and complex arm and motion movements were analyzed.

The simulated micro-Doppler signature was verified by a measurement

by a X-band (8–12 GHz) radar. Micro-Doppler signature of the human

by UWB radar was presented in [22].

Another solution for detection application is using statistic theories to

test the suggested target against a threshold. For UWB radar detection

applications, methods such as fixed threshold and Constant False Alarm

Rate detectors (CFAR) are proposed [24].

2.3.3 Localization

Electromagnetic (EM) waves propagate in vacuum at the speed of light

(∼ 3 × 108 m/s). The transmitted wave is propagating through some

media that can be the air, cloths or rainfalls. The media affects the

propagation speed of EM waves, but these effects are quite small in

frequencies bellow 10 GHz so they can be disregarded [25]. To calculate

the distance to the target equation 2.3 is used.

Distance to the target = T OA ∗ C0

2

(2.3)

where C0 is the speed of light in vacuum and Time Of Arrival (TOA)

of the detected target is the time that it takes for the electromagnetic

waves to travel from the transmitter to the target and scattered back

again to the receiver.

2.3.4 Tracking

Tracking algorithms are often used to increase the precision of the localization results for moving targets. Most of the tracking algorithms

can make an educated guess about target’s next position and reduce the

measurements uncertainty and smoothen the target trajectory. Kalman

filter, linear least square and particle filter are widely used for this application [26, 27].

25

14 Chapter 2. Related Work

2.4 Human Radar Cross Section

The term Radar Cross Section (RCS) is defined as the projected area

of a metal sphere that would return the same echo signal as the target.

It depends on many factors such as frequency and polarization of the

incident wave and the target aspect (its orientation relative to the radar

device). Calculation of RCS is a matter of finding the scattered electric field from the target which involves calculating the induced current

on the target by solving Maxwell’s equations for complicated boundary

conditions. This is usually by numerical methods.

For more complex objects such as the human body, the analytical

solution method does not exist. Other approximate methods are used

to estimate the radar cross section of complex objects. RCS can also be

measured by placing the target at radar detection region in free space

or an anechoic chamber [28].

In this thesis an approximate phantom of a human trunk is built to

assist testing and applying simulated conditions for human body electromagnetic field interaction across the frequency band-width of interest

and to make it easier to repeat measurements (Paper C). The RCS of the

phantom is of course measured and compared with RCS of the human.

The human body RCS has been explored by both radar measurements and computer model simulations by several investigators. Dogaru

et al. [29] modelled the radar signature of the human body by Finite Difference Time Domain (FDTD). They used the human body computer

model in various postures in the frequency range of 0.5 GHz to 9 GHz

and all azimuth angles. It was observed that for most frequencies, the

RCS of the body is in a range between −10 and 0 dBsm, where dBsm

is a notation for RCS of a target in decibels. It was also shown that

the posture and amount of fat on the body can affect the RCS, but the

average remains the same for different postures such as standing and

kneeling human. One reason for this is because the main contribution

of the radar reflection is typically coming from the trunk.

Yamada et al. [30] measured the RCS for a human in 76 GHz band.

While the RCS was changing with orientation, the average intensity was

found to be −8.1 dBsm, and as expected, the front and back of the

human trunk produced the largest reflection. It was also shown that the

type of clothing being worn can then affect the radar reflection.

14 Chapter 2. Related Work

2.4 Human Radar Cross Section

The term Radar Cross Section (RCS) is defined as the projected area

of a metal sphere that would return the same echo signal as the target.

It depends on many factors such as frequency and polarization of the

incident wave and the target aspect (its orientation relative to the radar

device). Calculation of RCS is a matter of finding the scattered electric field from the target which involves calculating the induced current

on the target by solving Maxwell’s equations for complicated boundary

conditions. This is usually by numerical methods.

For more complex objects such as the human body, the analytical

solution method does not exist. Other approximate methods are used

to estimate the radar cross section of complex objects. RCS can also be

measured by placing the target at radar detection region in free space

or an anechoic chamber [28].

In this thesis an approximate phantom of a human trunk is built to

assist testing and applying simulated conditions for human body electromagnetic field interaction across the frequency band-width of interest

and to make it easier to repeat measurements (Paper C). The RCS of the

phantom is of course measured and compared with RCS of the human.

The human body RCS has been explored by both radar measurements and computer model simulations by several investigators. Dogaru

et al. [29] modelled the radar signature of the human body by Finite Difference Time Domain (FDTD). They used the human body computer

model in various postures in the frequency range of 0.5 GHz to 9 GHz

and all azimuth angles. It was observed that for most frequencies, the

RCS of the body is in a range between −10 and 0 dBsm, where dBsm

is a notation for RCS of a target in decibels. It was also shown that

the posture and amount of fat on the body can affect the RCS, but the

average remains the same for different postures such as standing and

kneeling human. One reason for this is because the main contribution

of the radar reflection is typically coming from the trunk.

Yamada et al. [30] measured the RCS for a human in 76 GHz band.

While the RCS was changing with orientation, the average intensity was

found to be −8.1 dBsm, and as expected, the front and back of the

human trunk produced the largest reflection. It was also shown that the

type of clothing being worn can then affect the radar reflection.

26

2.5 Related Experimental Systems 15

2.5 Related Experimental Systems

As mention in section 2.1, UWB radar is used for human detection in

LOS or behind obstacles. Furthermore in many UWB applications, the

character of target motion is not known but usually signal processing

algorithms aim to detect either moving persons or static persons. To

the best of my knowledge the only system that combines the moving

and static person detection is presented by Rovaˇnkov´a and Kocur [19].

This thesis aims at detection of humans working in collaboration with

machineries and it is equally important to detect dynamic humans and

static humans.

Experimental UWB systems used for human detection are presented

in this section, and categorized based on if they are used for human

detection in LOS or behind obstacles and whether they aim at detecting

static or dynamic human beings.

2.5.1 Systems for Human Detection in LOS

In this section, the experimental UWB radar systems aiming at detecting

humans in LOS are presented.

Systems for Dynamic Human Detection in LOS

Chang et al. [14] were addressing the problem of providing pedestrian

safety in the presence of moving vehicles by using an UWB pulse-based

mono-static radar. A Specular Multi-Path Model (SMPM) was used

to characterize human body scattered UWB waveforms to detect the

presence of humans via gait. The SMPM was a computationally useful signal representation that reduces UWB waveform representation to

2 dimensions (path amplitude and TOA). First the Moving Target Indication (MTI) system was applied, which rejects highly human-unlike

stationary clutter. Then the CLEAN algorithm [32] was applied to the

MTI response of radar scan to obtain estimated TOAs and amplitudes of

the decomposed multipath components. Thereafter, the signal was segmented in time to isolate the scatters associated with individual moving

objects. Later, each segment was associated to segments from previous

recording intervals with the aid of a Multi-Target Tracking (MTT) technique. A hypothesis testing process determined whether the tested track

was interpreted/detected as a human or not based on three features: (1)

2.5 Related Experimental Systems 15

2.5 Related Experimental Systems

As mention in section 2.1, UWB radar is used for human detection in

LOS or behind obstacles. Furthermore in many UWB applications, the

character of target motion is not known but usually signal processing

algorithms aim to detect either moving persons or static persons. To

the best of my knowledge the only system that combines the moving

and static person detection is presented by Rovaˇnkov´a and Kocur [19].

This thesis aims at detection of humans working in collaboration with

machineries and it is equally important to detect dynamic humans and

static humans.

Experimental UWB systems used for human detection are presented

in this section, and categorized based on if they are used for human

detection in LOS or behind obstacles and whether they aim at detecting

static or dynamic human beings.

2.5.1 Systems for Human Detection in LOS

In this section, the experimental UWB radar systems aiming at detecting

humans in LOS are presented.

Systems for Dynamic Human Detection in LOS

Chang et al. [14] were addressing the problem of providing pedestrian

safety in the presence of moving vehicles by using an UWB pulse-based

mono-static radar. A Specular Multi-Path Model (SMPM) was used

to characterize human body scattered UWB waveforms to detect the

presence of humans via gait. The SMPM was a computationally useful signal representation that reduces UWB waveform representation to

2 dimensions (path amplitude and TOA). First the Moving Target Indication (MTI) system was applied, which rejects highly human-unlike

stationary clutter. Then the CLEAN algorithm [32] was applied to the

MTI response of radar scan to obtain estimated TOAs and amplitudes of

the decomposed multipath components. Thereafter, the signal was segmented in time to isolate the scatters associated with individual moving

objects. Later, each segment was associated to segments from previous

recording intervals with the aid of a Multi-Target Tracking (MTT) technique. A hypothesis testing process determined whether the tested track

was interpreted/detected as a human or not based on three features: (1)

27

16 Chapter 2. Related Work

Table 2.1: State of the art for human being detection with UWB radar, NA stands for Not Applicable.

Author Background

subtraction

Detection LOS/NLOS Hardware Distance Antenna Localization Tracking

Chang et

al. [14]

MTI

testing

hypothseis

MTT & LOS

Domain

Time

TM

0.3

−12.2

m Dipole

Toroidal TOA MTT

Kilic et al.

[2]

Averaging Likelihood

test

LOS Time

DomainTM

1m

−4 m Toroidal

Dipole

criterion

crossing

Threshold NA

Shingu et

al. [3]

NA

amplitude

Maximum LOS

Analyser

Network Max 6 m Horn TOA NA

Kocur [19]

and

Rovaˇnkov´a

averaging

Exponential CFAR, FFT Behind wall Msequence

∼15 m Horn TOA MTT,

Filter

Kalman

Sachs et al.

[4]

filtering

adaptive

High-pass CFAR

rubble

and under

Behind walls

sequence

M- 17 m Spiral CFAR NA

Rane et al.

[5]

subtraction

Range profile

filter &

Band-pass

STA/LTA

peak of

door

and wooden

concrete wall

LOS, behind

Domain

Time

TM

6 m Toroidal

Dipole

STA/LTA NA

Zetik et al.

[6]

eraging

ponential avAdaptive ex- NA Behind wall sequence M- NA Horn TOA NA

et al.

Nezirovic

[7] squares

Linear least- RMD, SVD Pile of bricks

crete pipe

and a con- sequence

M- 1.6 m Horn NA NA

ger [31]

& BuchegOssberger average Removing transform Wavelet Behind wall generator Pulse 1−5 m Horn NA NA

Kocur [8]

and

Rovaˇnkov´a

averaging

Exponential CFAR Behind wall Msequence Max 3 m Horn TOA Kalman Filter

Zhao et al.

[9]

NA HMM

door

and wooden

Gypsum wall

Domain

Time

TM

∼20

−23

m Dipole

Toroidal NA NA

16 Chapter 2. Related Work

Table 2.1: State of the art for human being detection with UWB radar, NA stands for Not Applicable.

Author Background

subtraction

Detection LOS/NLOS Hardware Distance Antenna Localization Tracking

Chang et

al. [14]

MTI

testing

hypothseis

MTT & LOS

Domain

Time

TM

0.3

−12.2

m Dipole

Toroidal TOA MTT

Kilic et al.

[2]

Averaging Likelihood

test

LOS Time

DomainTM

1m

−4 m Toroidal

Dipole

criterion

crossing

Threshold NA

Shingu et

al. [3]

NA

amplitude

Maximum LOS

Analyser

Network Max 6 m Horn TOA NA

Kocur [19]

and

Rovaˇnkov´a

averaging

Exponential CFAR, FFT Behind wall Msequence

∼15 m Horn TOA MTT,

Filter

Kalman

Sachs et al.

[4]

filtering

adaptive

High-pass CFAR

rubble

and under

Behind walls

sequence

M- 17 m Spiral CFAR NA

Rane et al.

[5]

subtraction

Range profile

filter &

Band-pass

STA/LTA

peak of

door

and wooden

concrete wall

LOS, behind

Domain

Time

TM

6 m Toroidal

Dipole

STA/LTA NA

Zetik et al.

[6]

eraging

ponential avAdaptive ex- NA Behind wall sequence M- NA Horn TOA NA

et al.

Nezirovic

[7] squares

Linear least- RMD, SVD Pile of bricks

crete pipe

and a con- sequence

M- 1.6 m Horn NA NA

ger [31]

& BuchegOssberger average Removing transform Wavelet Behind wall generator Pulse 1−5 m Horn NA NA

Kocur [8]

and

Rovaˇnkov´a

averaging

Exponential CFAR Behind wall Msequence Max 3 m Horn TOA Kalman Filter

Zhao et al.

[9]

NA HMM

door

and wooden

Gypsum wall

Domain

Time

TM

∼20

−23

m Dipole

Toroidal NA NA

28

2.5 Related Experimental Systems 17

the paths maximum magnitude, which is relevant to target composition

and cross-section size; (2) the Root Mean Square (RMS) delay spread of

the multipath delay profile (or the RMS range spread), which is relevant

to target size over the range dimension; and (3) the velocity of the target.

This approach was tested in a realistic outdoor environment and shows

better than 80% detection probability with 1.58% false positive. This

system did not provide a solution for static human being detection. The

experiment was done only in scenarios containing moving cars, humans

and fixed objects but the algorithms were not tested when other clutter

such as bicycles and animals were in the detection region of the radar

system.

Bryan et al. [21] used UWB radar to classify eight different human

activities including walking, running, rotating, punching, jumping, transitioning between standing and sitting, crawling and standing still. The

returned signals were processed using Principal Component Analysis

(PCA) so the dimension of the radar data was reduced. A Support

Vector Machine (SVM) was used to classify the activities based on the

signature. The PCA coefficients, target speed, and Fast Fourier Transform (FFT) results of PCA were the inputs to SVM. FFT result of the

PCA coefficient has information about the dominant periodicity of human motion as well as periodicity of micro-motions. A multi-class classification was implemented using a one versus-one method. The accuracy

of the results are reported to be 85%.

Systems for Static Human Detection in LOS

Kilic et al. [2] present a technique for detection of static humans based

on the fact that a human presence induces small low-frequency temporal

variations in the UWB signal that stand out against the background

signal. The experiment was performed in indoor environment where 3

UWB radios from Time Domain were installed as anchor nodes and the

person was standing in 48 different places with 50 cm in between every

position. To remove unwanted background, the averaged signal over time

was subtracted from the raw signal. Later a likelihood test determined

if the human exist in detection region of the radar. In order to locate the

person two different methods were tested: Line Search and Threshold

Crossing. Line search was simply searching the maximum value in the

signal. In some conditions, the largest peaks did not always correspond

to the person, especially if the person was close to strong reflectors. In

2.5 Related Experimental Systems 17

the paths maximum magnitude, which is relevant to target composition

and cross-section size; (2) the Root Mean Square (RMS) delay spread of

the multipath delay profile (or the RMS range spread), which is relevant

to target size over the range dimension; and (3) the velocity of the target.

This approach was tested in a realistic outdoor environment and shows

better than 80% detection probability with 1.58% false positive. This

system did not provide a solution for static human being detection. The

experiment was done only in scenarios containing moving cars, humans

and fixed objects but the algorithms were not tested when other clutter

such as bicycles and animals were in the detection region of the radar

system.

Bryan et al. [21] used UWB radar to classify eight different human

activities including walking, running, rotating, punching, jumping, transitioning between standing and sitting, crawling and standing still. The

returned signals were processed using Principal Component Analysis

(PCA) so the dimension of the radar data was reduced. A Support

Vector Machine (SVM) was used to classify the activities based on the

signature. The PCA coefficients, target speed, and Fast Fourier Transform (FFT) results of PCA were the inputs to SVM. FFT result of the

PCA coefficient has information about the dominant periodicity of human motion as well as periodicity of micro-motions. A multi-class classification was implemented using a one versus-one method. The accuracy

of the results are reported to be 85%.

Systems for Static Human Detection in LOS

Kilic et al. [2] present a technique for detection of static humans based

on the fact that a human presence induces small low-frequency temporal

variations in the UWB signal that stand out against the background

signal. The experiment was performed in indoor environment where 3

UWB radios from Time Domain were installed as anchor nodes and the

person was standing in 48 different places with 50 cm in between every

position. To remove unwanted background, the averaged signal over time

was subtracted from the raw signal. Later a likelihood test determined

if the human exist in detection region of the radar. In order to locate the

person two different methods were tested: Line Search and Threshold

Crossing. Line search was simply searching the maximum value in the

signal. In some conditions, the largest peaks did not always correspond

to the person, especially if the person was close to strong reflectors. In

29

18 Chapter 2. Related Work

this case, not only the paths that were directly reflected off the person,

but also the indirect reflections show fluctuation over time. For that

a threshold-based method was proposed. The results were examined in

terms of missed detection and accuracy. The accuracy was reported to be

less than 65 cm. The authors believe that proposed technique could also

be applicable to cases with multiple humans. However, this experiment

is not tested on moving human beings to validate the method.

Shingu et al. [3] studied human detection and localization with simulation of an UWB radar sensor network. The received power model of

a human body was estimated by Akaike Information Criterion (AIK).

It was concluded that Gaussian distribution was the best fit as a clutter model. The simulation results were compared with real propagation

measurements with a network analyzer. The localization error was shown

to be 14 cm or less.

2.5.2 Systems for Human Detection Behind Obstacles

Human detection behind walls is a dominant subject in the UWB research area. This section starts by presenting systems for both dynamic

and static human detection, followed by systems for only dynamic human

detection, and ending with systems for only detection of static human.

Rovaˇnkov´a and Kocur [19] proposed a method to detect human behind walls by UWB radar. Detection methods for static and dynamic

human beings are quite similar in signal processing procedures. To remove the background, an exponential averaging method was used due to

its robust performance and low complexity. For detection stage for moving clutter the CFAR detector was proposed. TOA is used to localize the

target and Multiple target tracking (MTT) system using a linear Kalman

filtering was used for target tracking. For the static person, in order to

further improve the signal-to-noise ratio of a static target echo, the impulse response with subtracted background was applied to a range filter

which can reduce the clutter residue and noise. Additionally, respiration

as a narrow-band process can also be enhanced by the use of low-pass

filtering. To extract the respiration rate, a horizontal FFT was applied.

A procedure for positioning of a person with unknown or changing motion activity was proposed. The performance of the combined procedure

is demonstrated by an experiment with one static person and one moving person changing his motion activity during the measurement. The

18 Chapter 2. Related Work

this case, not only the paths that were directly reflected off the person,

but also the indirect reflections show fluctuation over time. For that

a threshold-based method was proposed. The results were examined in

terms of missed detection and accuracy. The accuracy was reported to be

less than 65 cm. The authors believe that proposed technique could also

be applicable to cases with multiple humans. However, this experiment

is not tested on moving human beings to validate the method.

Shingu et al. [3] studied human detection and localization with simulation of an UWB radar sensor network. The received power model of

a human body was estimated by Akaike Information Criterion (AIK).

It was concluded that Gaussian distribution was the best fit as a clutter model. The simulation results were compared with real propagation

measurements with a network analyzer. The localization error was shown

to be 14 cm or less.

2.5.2 Systems for Human Detection Behind Obstacles

Human detection behind walls is a dominant subject in the UWB research area. This section starts by presenting systems for both dynamic

and static human detection, followed by systems for only dynamic human

detection, and ending with systems for only detection of static human.

Rovaˇnkov´a and Kocur [19] proposed a method to detect human behind walls by UWB radar. Detection methods for static and dynamic

human beings are quite similar in signal processing procedures. To remove the background, an exponential averaging method was used due to

its robust performance and low complexity. For detection stage for moving clutter the CFAR detector was proposed. TOA is used to localize the

target and Multiple target tracking (MTT) system using a linear Kalman

filtering was used for target tracking. For the static person, in order to

further improve the signal-to-noise ratio of a static target echo, the impulse response with subtracted background was applied to a range filter

which can reduce the clutter residue and noise. Additionally, respiration

as a narrow-band process can also be enhanced by the use of low-pass

filtering. To extract the respiration rate, a horizontal FFT was applied.

A procedure for positioning of a person with unknown or changing motion activity was proposed. The performance of the combined procedure

is demonstrated by an experiment with one static person and one moving person changing his motion activity during the measurement. The

30

2.5 Related Experimental Systems 19

results showed that it is possible to obtain more extensive and precise

information about the position of monitored persons at the expense of

computational complexity and time consumption. The presented timing

constraint of this system (75 s to detect respiration activity) implies that

this system is not suitable for time critical safety applications.

Sachs et al. [4] used a M-sequence UWB radar with 3-antenna configuration (one transmitter and two receiver antennas) to detect trapped

humans under rubble and moving humans. For moving humans detection, the first signal processing step consists of removing the clutter

caused from static objects by high-pass adaptive filtering. In the second step, CFAR processing for target indication and the corresponding

TOA. Outliers and missing points were then removed and finally, the target trajectory was calculated. The paper concluded that the 3-antenna

configuration is not robust against ghost targets by its principle. To

detect trapped humans under rubble, the small movements such as respiration was out of interest. The signal was enhanced by narrow-band

filtering carried out by applying a horizontal FFT on the data after

clutter removal. Additionally, a sliding average with a short window

was performed over the transformed signal in the propagation time direction. The experiment could detect the breathing person lying in a

cement pipe. The paper presented the results of static and dynamic

humans separately to prove that it was possible to measure both cases

with the mentioned hardware, but it did not provide any information

if it was possible to combine these methods for detection of static and

dynamic human beings at the same time.

Systems for Dynamic Human Detection Behind Obstacles

Rane et al. proposed a Short Term to Long Term Average ratio (STA/LTA)

to detect moving target by Time Domain UWB radar in LOS and behind obstacles [5]. The method is based on enveloping the signal by the

Hilbert transform and averaging. The results showed that this method

shows 79.6% more accuracy than choosing the simple peak of processed

range profile to estimate the distance. For pre-processing the Infinite

Impulse Response (IIR) bandpass filter of order 20 and passband of 3.1–

5.3 GHz is applied along fast time dimension to suppress frequencies

beyond the radar operating range. Stationary clutter is suppressed by

performing weighted Range Profile Subtraction (RPS) on each range

profile. This paper did not consider stationary human being or multiple

2.5 Related Experimental Systems 19

results showed that it is possible to obtain more extensive and precise

information about the position of monitored persons at the expense of

computational complexity and time consumption. The presented timing

constraint of this system (75 s to detect respiration activity) implies that

this system is not suitable for time critical safety applications.

Sachs et al. [4] used a M-sequence UWB radar with 3-antenna configuration (one transmitter and two receiver antennas) to detect trapped

humans under rubble and moving humans. For moving humans detection, the first signal processing step consists of removing the clutter

caused from static objects by high-pass adaptive filtering. In the second step, CFAR processing for target indication and the corresponding

TOA. Outliers and missing points were then removed and finally, the target trajectory was calculated. The paper concluded that the 3-antenna

configuration is not robust against ghost targets by its principle. To

detect trapped humans under rubble, the small movements such as respiration was out of interest. The signal was enhanced by narrow-band

filtering carried out by applying a horizontal FFT on the data after

clutter removal. Additionally, a sliding average with a short window

was performed over the transformed signal in the propagation time direction. The experiment could detect the breathing person lying in a

cement pipe. The paper presented the results of static and dynamic

humans separately to prove that it was possible to measure both cases

with the mentioned hardware, but it did not provide any information

if it was possible to combine these methods for detection of static and

dynamic human beings at the same time.

Systems for Dynamic Human Detection Behind Obstacles

Rane et al. proposed a Short Term to Long Term Average ratio (STA/LTA)

to detect moving target by Time Domain UWB radar in LOS and behind obstacles [5]. The method is based on enveloping the signal by the

Hilbert transform and averaging. The results showed that this method

shows 79.6% more accuracy than choosing the simple peak of processed

range profile to estimate the distance. For pre-processing the Infinite

Impulse Response (IIR) bandpass filter of order 20 and passband of 3.1–

5.3 GHz is applied along fast time dimension to suppress frequencies

beyond the radar operating range. Stationary clutter is suppressed by

performing weighted Range Profile Subtraction (RPS) on each range

profile. This paper did not consider stationary human being or multiple

31

20 Chapter 2. Related Work

target detection.

Zetik et al. [6] described the architecture and design of an M-sequence

UWB through-the-wall radar for detection and localization of moving

humans. To remove clutter an adaptive background subtraction method

was proposed. This method is based on the exponential averaging although instead of a scalar weighing factor α, a vector of weighing timevariant coefficients αk was introduced. The location of the target was

measured by TOA. The achieved precision is in an order of 40 cm. This

paper did not consider stationary human being or multiple target detection.

In [33], Ram et al. used micro-Doppler processing to detect humans

behind obstacle. The simulation showed that the wall introduces minor

distortion on micro-Doppler effect of human body parts but it affects the

magnitude response of Doppler effect in form of attenuation and fading.

The experiment was based on a Doppler radar, but the preliminary investigations by the authors showed that the same methodology could be

applied to a wide-band radar.

Systems for Static Human Detection Behind Obstacles

Nezirovi´c et al. [7] presented a Respiratory Motion Detection (RMD)

algorithm. The algorithm was based on RMD algorithm presented in [4]

and complementing it with SVD. The purpose of applying SVD is to

separate the respiratory motion response from the non-stationary clutter, and in addition, reduce the effect of the Additive White Gaussian

Noise (AWGN). A linear least-squares method was proposed to remove

stationary clutter along with any potential linear trend in the slow-time

dimension. The results compared the developed RMD with the reference RMD. The performance of the RMD algorithm was assessed both

by means of a Monte Carlo simulation as well as experimental data acquired under realistic conditions of a person lying in concrete pipe under

1.2 meter bricks and moist soil. The results showed increase in performance of the developed RMD algorithm over the reference RMD algorithm in terms of its de-noising capabilities and non-stationary clutter

separation.

Ossberger et al. [31] presented a Continuous Wavelet Transform (CWT)

for detection of respiratory activity thorough wall with an UWB pulse

radar test set-up. CWT is suitable for non-stationary signals like pulses.

It was shown that the UWB radar can detect respiration at up to 5

20 Chapter 2. Related Work

target detection.

Zetik et al. [6] described the architecture and design of an M-sequence

UWB through-the-wall radar for detection and localization of moving

humans. To remove clutter an adaptive background subtraction method

was proposed. This method is based on the exponential averaging although instead of a scalar weighing factor α, a vector of weighing timevariant coefficients αk was introduced. The location of the target was

measured by TOA. The achieved precision is in an order of 40 cm. This

paper did not consider stationary human being or multiple target detection.

In [33], Ram et al. used micro-Doppler processing to detect humans

behind obstacle. The simulation showed that the wall introduces minor

distortion on micro-Doppler effect of human body parts but it affects the

magnitude response of Doppler effect in form of attenuation and fading.

The experiment was based on a Doppler radar, but the preliminary investigations by the authors showed that the same methodology could be

applied to a wide-band radar.

Systems for Static Human Detection Behind Obstacles

Nezirovi´c et al. [7] presented a Respiratory Motion Detection (RMD)

algorithm. The algorithm was based on RMD algorithm presented in [4]

and complementing it with SVD. The purpose of applying SVD is to

separate the respiratory motion response from the non-stationary clutter, and in addition, reduce the effect of the Additive White Gaussian

Noise (AWGN). A linear least-squares method was proposed to remove

stationary clutter along with any potential linear trend in the slow-time

dimension. The results compared the developed RMD with the reference RMD. The performance of the RMD algorithm was assessed both

by means of a Monte Carlo simulation as well as experimental data acquired under realistic conditions of a person lying in concrete pipe under

1.2 meter bricks and moist soil. The results showed increase in performance of the developed RMD algorithm over the reference RMD algorithm in terms of its de-noising capabilities and non-stationary clutter

separation.

Ossberger et al. [31] presented a Continuous Wavelet Transform (CWT)

for detection of respiratory activity thorough wall with an UWB pulse

radar test set-up. CWT is suitable for non-stationary signals like pulses.

It was shown that the UWB radar can detect respiration at up to 5

32

2.5 Related Experimental Systems 21

meters.

Zhao, Liang, and Durrani [9] used Hidden Markov Model (HMM) to

classify the target in presence of clutter. The experiment was done in

two scenarios: a scenario with dense foliage and a 1.5 meter 90° corner

metal reflector and a through wall scenario with a human target. The

paper presented the detection results in terms of false positive and negative outputs. Results showed the possibility of using HMM for target

detection. For through-wall detection scenario, HMMs also showed good

capability to distinguish between radar signals containing human target

and no target.

2.5 Related Experimental Systems 21

meters.

Zhao, Liang, and Durrani [9] used Hidden Markov Model (HMM) to

classify the target in presence of clutter. The experiment was done in

two scenarios: a scenario with dense foliage and a 1.5 meter 90° corner

metal reflector and a through wall scenario with a human target. The

paper presented the detection results in terms of false positive and negative outputs. Results showed the possibility of using HMM for target

detection. For through-wall detection scenario, HMMs also showed good

capability to distinguish between radar signals containing human target

and no target.

33

Chapter 3. System Design and Validation

Chapter 3

System Design and

Validation

As presented in chapter 2, most UWB radar systems for human detection

applications are developed for surveillance and rescue of humans behind

obstacles, and are focused on either static or dynamic human detection.

These systems generally do not consider the effect of environmental noise

or different postures, physical builds or size for different humans on signal

detection, and do not discuss the shortcomings of UWB radar in human

detection applications. In this section some of aforementioned issues are

addressed and the contributions and results achieved within this thesis

are presented.

This section contains three parts: Part one presents the design of

a data acquisition application. Part two presents the validation of the

radar system through measurements. These measurements were performed to evaluate the radar system’s capabilities and shortcomings. In

the third part some of the signal processing algorithms that are developed for detection of humans with UWB radar are presented. The results

and discussions for every part are presented.

3.1 Software Platform Design

The Radarbolaget’s UWB radar system is delivered with a windows application for data acquisition and processing. The drawback of Radarbo22

Chapter 3. System Design and Validation

Chapter 3

System Design and

Validation

As presented in chapter 2, most UWB radar systems for human detection

applications are developed for surveillance and rescue of humans behind

obstacles, and are focused on either static or dynamic human detection.

These systems generally do not consider the effect of environmental noise

or different postures, physical builds or size for different humans on signal

detection, and do not discuss the shortcomings of UWB radar in human

detection applications. In this section some of aforementioned issues are

addressed and the contributions and results achieved within this thesis

are presented.

This section contains three parts: Part one presents the design of

a data acquisition application. Part two presents the validation of the

radar system through measurements. These measurements were performed to evaluate the radar system’s capabilities and shortcomings. In

the third part some of the signal processing algorithms that are developed for detection of humans with UWB radar are presented. The results

and discussions for every part are presented.

3.1 Software Platform Design

The Radarbolaget’s UWB radar system is delivered with a windows application for data acquisition and processing. The drawback of Radarbo22

34

3.2 System Validation and Measurements 23

Figure 3.1: Data acquisition and processing system.

laget’s windows application is that to test a new algorithm on live radar

data, the algorithm needs to be coded in C which is a time consuming task. To overcome this, a windows application for data acquisition

and processing is designed and implemented by a team from Addiva AB

including the author of this thesis. The idea behind designing this application is to create a platform enabling direct use of MATLAB algorithms

and libraries for signal processing.

The application platform is built in a way that the algorithm parameters and their sequence is editable in the user interface. By using

MATLAB we have access to the advanced and computationally enhanced

signal processing algorithms, which can be applied directly on the live

and raw data. An overview of the system is shown in Figure 3.1. A

screenshot of the application graphical user interface is shown in Figure

3.2.

3.2 System Validation and Measurements

Several measurements are planned and performed in order to evaluate

the UWB radar system and to develop signal processing algorithms able

to detect and localize both static and dynamic humans in enclosed environments, which is the goal of this thesis.

In this section measurements that are performed to validate the constraints, characteristics and abilities of the system are presented.

3.2 System Validation and Measurements 23

Figure 3.1: Data acquisition and processing system.

laget’s windows application is that to test a new algorithm on live radar

data, the algorithm needs to be coded in C which is a time consuming task. To overcome this, a windows application for data acquisition

and processing is designed and implemented by a team from Addiva AB

including the author of this thesis. The idea behind designing this application is to create a platform enabling direct use of MATLAB algorithms

and libraries for signal processing.

The application platform is built in a way that the algorithm parameters and their sequence is editable in the user interface. By using

MATLAB we have access to the advanced and computationally enhanced

signal processing algorithms, which can be applied directly on the live

and raw data. An overview of the system is shown in Figure 3.1. A

screenshot of the application graphical user interface is shown in Figure

3.2.

3.2 System Validation and Measurements

Several measurements are planned and performed in order to evaluate

the UWB radar system and to develop signal processing algorithms able

to detect and localize both static and dynamic humans in enclosed environments, which is the goal of this thesis.

In this section measurements that are performed to validate the constraints, characteristics and abilities of the system are presented.

35

24 Chapter 3. System Design and Validation Figure 3.2: Data acquisition and processing application. The raw and processed radar data from a recorded and the input parameters and order of them can be modified. measurement is shown in the middle frame. In the right frame the signal processing algorithms can be chosen

24 Chapter 3. System Design and Validation Figure 3.2: Data acquisition and processing application. The raw and processed radar data from a recorded and the input parameters and order of them can be modified. measurement is shown in the middle frame. In the right frame the signal processing algorithms can be chosen

36

3.2 System Validation and Measurements 25

Figure 3.3: Measurements of Vertical and horizontal polarization of

Vivaldi antennas for 1 GHz, 2 GHz and 3 GHz.

3.2.1 The Vivaldi Antenna Radiation Pattern Measurement

In this section, an overview of measurement of the Vivaldi antenna radiation pattern is presented. The antenna radiation pattern is an important

factor in radar measurements in order to understand the radar interaction with the object or a human under test.

The Vivaldi antennas radiation pattern is measured in a semi anechoic chamber at DELTA Development Technology by the great-circle

method [34]. The floor in the semi anechoic chamber does not have

absorbing tiles therefore the antennas are positioned on 3 m height to

reduce the reflection from the floor. In the great-circle method the Measurement Antenna (MA), which in this set-up is a Horn antenna, is

fixed and the Antenna Under Test (AUT), which is the Vivaldi antenna,

is placed on a rotational positioner and rotated around the azimuth

through 360° to generate a two-dimensional polar pattern. The rotational positioner is rotating in 5° each steps. The same measurement is

repeated when the Vivaldi antenna is manually rotated 90° to measure

the horizontal polarization. The measurement set-up is shown in Figure

3.2 System Validation and Measurements 25

Figure 3.3: Measurements of Vertical and horizontal polarization of

Vivaldi antennas for 1 GHz, 2 GHz and 3 GHz.

3.2.1 The Vivaldi Antenna Radiation Pattern Measurement

In this section, an overview of measurement of the Vivaldi antenna radiation pattern is presented. The antenna radiation pattern is an important

factor in radar measurements in order to understand the radar interaction with the object or a human under test.

The Vivaldi antennas radiation pattern is measured in a semi anechoic chamber at DELTA Development Technology by the great-circle

method [34]. The floor in the semi anechoic chamber does not have

absorbing tiles therefore the antennas are positioned on 3 m height to

reduce the reflection from the floor. In the great-circle method the Measurement Antenna (MA), which in this set-up is a Horn antenna, is

fixed and the Antenna Under Test (AUT), which is the Vivaldi antenna,

is placed on a rotational positioner and rotated around the azimuth

through 360° to generate a two-dimensional polar pattern. The rotational positioner is rotating in 5° each steps. The same measurement is

repeated when the Vivaldi antenna is manually rotated 90° to measure

the horizontal polarization. The measurement set-up is shown in Figure

37

26 Chapter 3. System Design and Validation

Figure 3.4: The Vivaldi antenna radiation pattern measurement set-up

in a semi-anechoic chamber.

Figure 3.5: The Vivaldi antenna connected to a coaxial cable with a

balun and installed on a rotational positioner.

26 Chapter 3. System Design and Validation

Figure 3.4: The Vivaldi antenna radiation pattern measurement set-up

in a semi-anechoic chamber.

Figure 3.5: The Vivaldi antenna connected to a coaxial cable with a

balun and installed on a rotational positioner.

38

3.2 System Validation and Measurements 27

3.4 and Figure 3.5.

A balun with 3 dB damping following by a pair of semi rigid coaxial

cables connects the Vivaldi antenna to a synthesized sweeper that generates CW waves from 1–3 GHz with the frequency step size of 1 GHz.

In this measurement setup, the horn antenna with an built-in amplifier is connected to an Electromagnetic Interference (EMI) test receiver.

The results for both horizontal and vertical polarization measurements

are shown in Figure 3.3. The results show that there is no significant

directivity at 1 GHz. At 2 and 3 GHz the directivity is quite acceptable.

3.2.2 Comparison of M-sequence vs Pulse radar for

Static Human Detection (Paper A)

As presented in section 2, the majority of UWB radars systems used for

human detection are either pulse radar from Time DomainTM (currently

Humatics 1

) or M-sequence. These two systems are compared from hardware prospective and expected performance in [35]. To compare these

two systems performances, measurements were performed in a university

corridor with a static human standing in LOS at 4, 8 and 12 m respectively. The results are presented in paper (A). The better performance of

the M-sequence is due to the fact that the reflected wave from the target

correlates with transmitted M-sequence, which is a known code sequence.

This process causes M-sequence to have higher power consumption than

pulse radar but reduces the reflection from previous radar sweeps and

other sources of noise. To the best of my knowledge this is the First time

these two radar systems are compared in an experimental set-up.

This measurement was performed in order to analyse the throughput

of the radar system for static human detection and is partly answering

RQ1.

3.2.3 Walking Human Detection in Different Environments (Paper B)

One of the requirements for the system used in thesis is that the system shall be able to perform in a cluttered environment where moving

machineries and vehicles are working in collaboration with human beings. Additionally the proposed system requires a short response time,

1https://www.humatics.com/

3.2 System Validation and Measurements 27

3.4 and Figure 3.5.

A balun with 3 dB damping following by a pair of semi rigid coaxial

cables connects the Vivaldi antenna to a synthesized sweeper that generates CW waves from 1–3 GHz with the frequency step size of 1 GHz.

In this measurement setup, the horn antenna with an built-in amplifier is connected to an Electromagnetic Interference (EMI) test receiver.

The results for both horizontal and vertical polarization measurements

are shown in Figure 3.3. The results show that there is no significant

directivity at 1 GHz. At 2 and 3 GHz the directivity is quite acceptable.

3.2.2 Comparison of M-sequence vs Pulse radar for

Static Human Detection (Paper A)

As presented in section 2, the majority of UWB radars systems used for

human detection are either pulse radar from Time DomainTM (currently

Humatics 1

) or M-sequence. These two systems are compared from hardware prospective and expected performance in [35]. To compare these

two systems performances, measurements were performed in a university

corridor with a static human standing in LOS at 4, 8 and 12 m respectively. The results are presented in paper (A). The better performance of

the M-sequence is due to the fact that the reflected wave from the target

correlates with transmitted M-sequence, which is a known code sequence.

This process causes M-sequence to have higher power consumption than

pulse radar but reduces the reflection from previous radar sweeps and

other sources of noise. To the best of my knowledge this is the First time

these two radar systems are compared in an experimental set-up.

This measurement was performed in order to analyse the throughput

of the radar system for static human detection and is partly answering

RQ1.

3.2.3 Walking Human Detection in Different Environments (Paper B)

One of the requirements for the system used in thesis is that the system shall be able to perform in a cluttered environment where moving

machineries and vehicles are working in collaboration with human beings. Additionally the proposed system requires a short response time,

1https://www.humatics.com/

39

28 Chapter 3. System Design and Validation

so when the risk for collision arises it becomes possible to stop the vehicle

in advance. The reliability of the system is also an important factor that

can be presented in values such as false positive and negative outputs.

In paper (B) the results of an experimental comparison study of

human movements and presence detection in two different environments,

a semi-anechoic chamber and open office, using UWB M-Sequence radar

is presented. The signal processing algorithms presented in the paper

are able to track the target movements.

The results presented in paper (B) show that the cluttered environment has a direct effect on the false positive mainly due to multipath

reflections. The false negative outputs are mostly caused by the delay

in the human detection algorithm. This measurement was planned for

analyzing the throughput of a radar system for dynamic human detection and is partly answering the RQ1 by presenting the results of clutter

distribution of radar signal in different environments. The signal processing algorithms and measurements of the false positive and negative

outputs are partly answering RQ2.

3.2.4 Respiration Simulation and Measurement

One of the requirements for the system used in thesis is that the system

shall be able to detect dynamic humans as well as static humans. Respiratory activity was used as an indicator for presence of static humans in

literature presented in chapter 2. During the respiration of an average

adult human, the chest displacement is around 3 mm and the respiratory

rate corresponds to 12 – 20 breaths per minute.

The good spatial resolution of UWB radar creates the possibility of

detection of chest movements in humans. As presented in chapter 2,

different processing techniques such as narrow-band filtering followed by

FFT [4, 19], Wavelet transform [31] and micro-Doppler processing [33]

are used for detection of the respiratory activity.

In this thesis, the movement of the chest is simulated with the periodic movement of an aluminium plate, which should be easier to detect

for the radar than the measurement on a real human. In this measurement, the antenna pair, sender and receiver, are placed on a stand and

an aluminium plate of the size 20 × 20 cm2

is moved periodically for 4

cm and 90 degrees to bore sight of the antennas. The set-up is shown

in Figure 3.6. The xy board used for this set-up is built by a team at

Addiva AB including the author of this thesis.

28 Chapter 3. System Design and Validation

so when the risk for collision arises it becomes possible to stop the vehicle

in advance. The reliability of the system is also an important factor that

can be presented in values such as false positive and negative outputs.

In paper (B) the results of an experimental comparison study of

human movements and presence detection in two different environments,

a semi-anechoic chamber and open office, using UWB M-Sequence radar

is presented. The signal processing algorithms presented in the paper

are able to track the target movements.

The results presented in paper (B) show that the cluttered environment has a direct effect on the false positive mainly due to multipath

reflections. The false negative outputs are mostly caused by the delay

in the human detection algorithm. This measurement was planned for

analyzing the throughput of a radar system for dynamic human detection and is partly answering the RQ1 by presenting the results of clutter

distribution of radar signal in different environments. The signal processing algorithms and measurements of the false positive and negative

outputs are partly answering RQ2.

3.2.4 Respiration Simulation and Measurement

One of the requirements for the system used in thesis is that the system

shall be able to detect dynamic humans as well as static humans. Respiratory activity was used as an indicator for presence of static humans in

literature presented in chapter 2. During the respiration of an average

adult human, the chest displacement is around 3 mm and the respiratory

rate corresponds to 12 – 20 breaths per minute.

The good spatial resolution of UWB radar creates the possibility of

detection of chest movements in humans. As presented in chapter 2,

different processing techniques such as narrow-band filtering followed by

FFT [4, 19], Wavelet transform [31] and micro-Doppler processing [33]

are used for detection of the respiratory activity.

In this thesis, the movement of the chest is simulated with the periodic movement of an aluminium plate, which should be easier to detect

for the radar than the measurement on a real human. In this measurement, the antenna pair, sender and receiver, are placed on a stand and

an aluminium plate of the size 20 × 20 cm2

is moved periodically for 4

cm and 90 degrees to bore sight of the antennas. The set-up is shown

in Figure 3.6. The xy board used for this set-up is built by a team at

Addiva AB including the author of this thesis.

40

3.2 System Validation and Measurements 29

Figure 3.6: Respiration Simulation Set-up. An aluminium plate moving periodically by a stepper motors 90° to the bore sight of the antennas.

The result is shown in Figure 3.7. The antenna cross talk was removed from the measurement data and the data was up-sampled (see

3.3.5) to increase the accuracy. The periodic movement of the aluminium

plate is clearly visible in the radargram at around 3 m which is twice of

the distance of aluminium plate to the antennas.

The measurement is repeated with a real human sitting in-front of

the radar and breathing normally at Addiva AB office by the author of

this thesis. Some algorithms such as narrow-band filtering and FFT are

tested on the signal to detect respiration activity but it did not produce

satisfactory results. This might be related to fluctuation in signal at

every radar sweep or it may be because the algorithm is not suited for

this particular hardware. This measurement is partly answering RQ1

and RQ2.

3.2.5 Phantom Measurements (Paper C)

In paper (C), the measurement of a human torso phantom is presented.

Humans are complicated targets because of the complex surface profile

and difference in clothing and body size. A simplified phantom of the

human torso can replicate a human the in radar measurements. A circular cylinder pipe made of PVC with approximate dimension of a human

trunk is chosen as a phantom. The phantom is filled with a mixture of

sand, water and salt that creates a similar permittivity as the human

3.2 System Validation and Measurements 29

Figure 3.6: Respiration Simulation Set-up. An aluminium plate moving periodically by a stepper motors 90° to the bore sight of the antennas.

The result is shown in Figure 3.7. The antenna cross talk was removed from the measurement data and the data was up-sampled (see

3.3.5) to increase the accuracy. The periodic movement of the aluminium

plate is clearly visible in the radargram at around 3 m which is twice of

the distance of aluminium plate to the antennas.

The measurement is repeated with a real human sitting in-front of

the radar and breathing normally at Addiva AB office by the author of

this thesis. Some algorithms such as narrow-band filtering and FFT are

tested on the signal to detect respiration activity but it did not produce

satisfactory results. This might be related to fluctuation in signal at

every radar sweep or it may be because the algorithm is not suited for

this particular hardware. This measurement is partly answering RQ1

and RQ2.

3.2.5 Phantom Measurements (Paper C)

In paper (C), the measurement of a human torso phantom is presented.

Humans are complicated targets because of the complex surface profile

and difference in clothing and body size. A simplified phantom of the

human torso can replicate a human the in radar measurements. A circular cylinder pipe made of PVC with approximate dimension of a human

trunk is chosen as a phantom. The phantom is filled with a mixture of

sand, water and salt that creates a similar permittivity as the human

41

30 Chapter 3. System Design and Validation

Figure 3.7: Respiration Simulation Results. The periodic movement of

the aluminium plate is clearly visible from 20 to 60 s in the radargram

at around 3 m which is twice of the distance of aluminium plate to the

antennas. The antenna cross talk was removed from the measurement

data.

body. The RCS of the empty pipe, filled pipe and a human sitting in

front of the radar is measured and compared. The results show that

it is possible to distinguish the distances between human breast, neck

and head in the human RCS and the empty pipe front and back in the

empty pipe RCS. The RCS of filled pipe has higher amplitude than the

human but the overall summed signal is similar. The RCS of an metal

aluminium plate is also measured in different polarization of the transmitter antenna. This measurement and its results are answering RQ3.

In Paper (C), the frequency choice for the radar system for discerning

human trunk based on Mie theory is discussed. It is concluded that an

object with the size and geometry of human torso can have larger cross

section if the frequency of the radar system is lower than the frequency

band in the existing system but a system with lower frequency might

not provide the same spatial resolution. This is partly answering RQ1.

30 Chapter 3. System Design and Validation

Figure 3.7: Respiration Simulation Results. The periodic movement of

the aluminium plate is clearly visible from 20 to 60 s in the radargram

at around 3 m which is twice of the distance of aluminium plate to the

antennas. The antenna cross talk was removed from the measurement

data.

body. The RCS of the empty pipe, filled pipe and a human sitting in

front of the radar is measured and compared. The results show that

it is possible to distinguish the distances between human breast, neck

and head in the human RCS and the empty pipe front and back in the

empty pipe RCS. The RCS of filled pipe has higher amplitude than the

human but the overall summed signal is similar. The RCS of an metal

aluminium plate is also measured in different polarization of the transmitter antenna. This measurement and its results are answering RQ3.

In Paper (C), the frequency choice for the radar system for discerning

human trunk based on Mie theory is discussed. It is concluded that an

object with the size and geometry of human torso can have larger cross

section if the frequency of the radar system is lower than the frequency

band in the existing system but a system with lower frequency might

not provide the same spatial resolution. This is partly answering RQ1.

42

3.3 Signal Processing Algorithms 31

3.3 Signal Processing Algorithms

In this thesis, some of the algorithms addressed in the related work literature are implemented and tested on the obtained signals from measurements. Some other algorithms are developed by empirical trials. These

algorithms are presented in this chapter and are partly answering RQ2.

3.3.1 Pre-processing

The main objective for pre-processing is to remove noise from the raw

signal.

• Hilbert Transform: Hilbert transform of function u(t) is defined as

the following function:

H(u)(t) = 1

π

Z ∞

−∞

u(τ )

t − τ

dτ (3.1)

This linear operator is given by convolution with the function

1/(πt). The Hilbert transform H(u)(t) in the frequency domain

applies a phase shift of 90° to every Fourier component of a function. Therefore, H(u)(t) has the effect of shifting the phase of the

negative frequency components of u(t) by +90° (π/2 radians) and

the phase of the positive frequency components by 90°. Hilbert

transform is resulting in enveloping the signal, reducing the noise,

and make it easier to find the peaks that represent the target. The

result of the transform is shown in Figure 3.8.

In [5], Rane et al. show that by using Hilbert transform and averaging instead of choosing a simple peak to estimate the distance to

the target the accuracy increases. This performance improvement

is not investigated in this thesis.

• Automatic noise reduction: This filter sets a limit based on the

standard deviation of the signal calculated over the corresponding

data points of all radar sweeps (slow time) multiply by a sensitivity

factor. The sensitivity is an input argument to the automatic noise

reduction function. Any data point with an absolute value less than

that multiplication value is replaced with zero.

This filter removes the signal values with small amplitude from the

signal based on the desired sensitivity and reduces the probability

3.3 Signal Processing Algorithms 31

3.3 Signal Processing Algorithms

In this thesis, some of the algorithms addressed in the related work literature are implemented and tested on the obtained signals from measurements. Some other algorithms are developed by empirical trials. These

algorithms are presented in this chapter and are partly answering RQ2.

3.3.1 Pre-processing

The main objective for pre-processing is to remove noise from the raw

signal.

• Hilbert Transform: Hilbert transform of function u(t) is defined as

the following function:

H(u)(t) = 1

π

Z ∞

−∞

u(τ )

t − τ

dτ (3.1)

This linear operator is given by convolution with the function

1/(πt). The Hilbert transform H(u)(t) in the frequency domain

applies a phase shift of 90° to every Fourier component of a function. Therefore, H(u)(t) has the effect of shifting the phase of the

negative frequency components of u(t) by +90° (π/2 radians) and

the phase of the positive frequency components by 90°. Hilbert

transform is resulting in enveloping the signal, reducing the noise,

and make it easier to find the peaks that represent the target. The

result of the transform is shown in Figure 3.8.

In [5], Rane et al. show that by using Hilbert transform and averaging instead of choosing a simple peak to estimate the distance to

the target the accuracy increases. This performance improvement

is not investigated in this thesis.

• Automatic noise reduction: This filter sets a limit based on the

standard deviation of the signal calculated over the corresponding

data points of all radar sweeps (slow time) multiply by a sensitivity

factor. The sensitivity is an input argument to the automatic noise

reduction function. Any data point with an absolute value less than

that multiplication value is replaced with zero.

This filter removes the signal values with small amplitude from the

signal based on the desired sensitivity and reduces the probability

43

32 Chapter 3. System Design and Validation

Figure 3.8: Absolute value of the Hilbert transform of the signal.

of false positive by reducing the probability of the small amplitude

noise being mistaken for targets. This filter is suitable for offline

processing of the signal, when the measurement is completed and

there is an access to all measured radar returns. It is implemented

and applied on the measurement data with good results.

3.3.2 Clutter Removal

As previously mentioned in section 2.3.1 clutter is an unwanted radar

return signal. In this thesis, the aim of clutter removal is to detect the

radar response of static and dynamic humans in the detection region of

the radar. In UWB radar literature, the term “background” refers to the

clutter which contains, among others, the antenna cross-talk and waves

reflected from static objects except the human in the scenario [6, 19].

In this thesis, to remove background from the radar data two approaches are tested: In case of an static object, a reference measurement

is performed before the object of interest is placed in the radar detection

region. The obtained references measurement is processed by methods

such as averaging, removal of the absolute maximum, and median re32 Chapter 3. System Design and Validation

Figure 3.8: Absolute value of the Hilbert transform of the signal.

of false positive by reducing the probability of the small amplitude

noise being mistaken for targets. This filter is suitable for offline

processing of the signal, when the measurement is completed and

there is an access to all measured radar returns. It is implemented

and applied on the measurement data with good results.

3.3.2 Clutter Removal

As previously mentioned in section 2.3.1 clutter is an unwanted radar

return signal. In this thesis, the aim of clutter removal is to detect the

radar response of static and dynamic humans in the detection region of

the radar. In UWB radar literature, the term “background” refers to the

clutter which contains, among others, the antenna cross-talk and waves

reflected from static objects except the human in the scenario [6, 19].

In this thesis, to remove background from the radar data two approaches are tested: In case of an static object, a reference measurement

is performed before the object of interest is placed in the radar detection

region. The obtained references measurement is processed by methods

such as averaging, removal of the absolute maximum, and median re44

3.3 Signal Processing Algorithms 33

moval. This approach is suitable in a measurement scenario when there

is the possibility to measure the radar response of a static background

before the object of interest is placed in the radar detection region.

For dynamic objects and environments, methods such as exponential

averaging and adaptive background subtraction is used. Methods such

as averaging, removal of the absolute maximum, and median removal

can also be used for background removal of dynamic object detection

but it is only suitable for offline processing when the measurement is

completed and there is an access to all measured data. These methods

are presented in the following:

• Averaging: This method makes the reference frame simply by averaging corresponding data values in reference measurement (slow

time, see 2.4) and removing it from every frame in the measurement data. This method is widely used in UWB radar background

processing [2,31]. The experimental results in this thesis show that

this technique effectively removes the clutters.

• Removal of absolute maximum: In this method the absolute maximum of corresponding data points of all data in the reference measurement (slow time) is founded. This method can help removing

high peaks showing up in some frames due to the noise. The disadvantage of this method is that it might remove some important

data with high amplitude. This method was developed based on

empirical trials and showed a good performance when an activity

or movement was to be detected in a cluttered environment.

• Median removal: In this method the median of corresponding data

points of all data in the reference measurement (slow time) is removed from the measurement frames. This method was developed

based on empirical trials and showed a good performance when an

activity or movement was to be detected in a cluttered environment.

• Exponential averaging: Exponential averaging algorithm, computes

a new background estimate yk from the previous background yk−1

that is updated by a new measured radar return xk

yk = αyk−1 + (1 − α)xk (3.2)

where α is the constant scalar weighing factor with the value between 0 and 1, yk and xk are vectors with the size of [1× m]

3.3 Signal Processing Algorithms 33

moval. This approach is suitable in a measurement scenario when there

is the possibility to measure the radar response of a static background

before the object of interest is placed in the radar detection region.

For dynamic objects and environments, methods such as exponential

averaging and adaptive background subtraction is used. Methods such

as averaging, removal of the absolute maximum, and median removal

can also be used for background removal of dynamic object detection

but it is only suitable for offline processing when the measurement is

completed and there is an access to all measured data. These methods

are presented in the following:

• Averaging: This method makes the reference frame simply by averaging corresponding data values in reference measurement (slow

time, see 2.4) and removing it from every frame in the measurement data. This method is widely used in UWB radar background

processing [2,31]. The experimental results in this thesis show that

this technique effectively removes the clutters.

• Removal of absolute maximum: In this method the absolute maximum of corresponding data points of all data in the reference measurement (slow time) is founded. This method can help removing

high peaks showing up in some frames due to the noise. The disadvantage of this method is that it might remove some important

data with high amplitude. This method was developed based on

empirical trials and showed a good performance when an activity

or movement was to be detected in a cluttered environment.

• Median removal: In this method the median of corresponding data

points of all data in the reference measurement (slow time) is removed from the measurement frames. This method was developed

based on empirical trials and showed a good performance when an

activity or movement was to be detected in a cluttered environment.

• Exponential averaging: Exponential averaging algorithm, computes

a new background estimate yk from the previous background yk−1

that is updated by a new measured radar return xk

yk = αyk−1 + (1 − α)xk (3.2)

where α is the constant scalar weighing factor with the value between 0 and 1, yk and xk are vectors with the size of [1× m]

45

34 Chapter 3. System Design and Validation

containing background estimate and measured radar return in fast

time (see 2.4), respectively. Index k refers to the actual time instant. Thus, new background estimate takes a fraction of the previous estimate and a fraction from the measured radar response.

By controlling the α value it is possible to emphasize the recent

events, or smoothing out high frequency variations and revealing

long term trends in the background estimation [6].

• Adaptive background subtraction: This method is implemented

based on the method presented by Zetik et al. [6]. This method

has the advantage of removing the background from measurements

where human detection is based on respiration or smaller movements when other background removal methods remove these small

movement as they are static backgrounds. In this method α is not

a scalar value but a vector of weighing coefficients αk. This vector

is time variant where k is a certain time instance. Vector qk is

adapting the αk coefficients. The following lines shows how α is

changed in an adaptive way.

if qik < T hreshold1

if qik/zik < T hreshold2

αik = 1;

else

αik = α;

else

αik = 1;

This method is implemented in this thesis and showed a good performance in removing the background for the walking human detection scenario.

3.3.3 Target detection

Detection algorithms will determine if the target is absent or present in

radar signal.

• CFAR: CFAR detectors provide adaptive estimation of an optimum

threshold based on Neyman-Pearson criterion and assuming that

the probability distribution function of the clutter is known [36].

CFAR detection is widely used in UWB radar target detection

[4, 8, 19]. An overview depiction of CFAR is presented in Figure

3.9. CFAR is an adaptive procedure that detects the targets by

34 Chapter 3. System Design and Validation

containing background estimate and measured radar return in fast

time (see 2.4), respectively. Index k refers to the actual time instant. Thus, new background estimate takes a fraction of the previous estimate and a fraction from the measured radar response.

By controlling the α value it is possible to emphasize the recent

events, or smoothing out high frequency variations and revealing

long term trends in the background estimation [6].

• Adaptive background subtraction: This method is implemented

based on the method presented by Zetik et al. [6]. This method

has the advantage of removing the background from measurements

where human detection is based on respiration or smaller movements when other background removal methods remove these small

movement as they are static backgrounds. In this method α is not

a scalar value but a vector of weighing coefficients αk. This vector

is time variant where k is a certain time instance. Vector qk is

adapting the αk coefficients. The following lines shows how α is

changed in an adaptive way.

if qik < T hreshold1

if qik/zik < T hreshold2

αik = 1;

else

αik = α;

else

αik = 1;

This method is implemented in this thesis and showed a good performance in removing the background for the walking human detection scenario.

3.3.3 Target detection

Detection algorithms will determine if the target is absent or present in

radar signal.

• CFAR: CFAR detectors provide adaptive estimation of an optimum

threshold based on Neyman-Pearson criterion and assuming that

the probability distribution function of the clutter is known [36].

CFAR detection is widely used in UWB radar target detection

[4, 8, 19]. An overview depiction of CFAR is presented in Figure

3.9. CFAR is an adaptive procedure that detects the targets by

46

3.3 Signal Processing Algorithms 35

Figure 3.9: CFAR processing.

comparing the neighboring cells to the cell under test and a decision

is made about if a cell under test is a target or not. The advantage

of this method is that the adaptive threshold keeps the probability

of false positive at a constant value. In this thesis, CFAR detector

is used for human walking detection and the results are presented

in paper (B).

• Peak detector: This method detects the peaks in the range measurement data (fast time) based on a certain limit. These peaks

are presented as potential targets. This method is used in this

thesis for human detection and tracking and provided a good performance.

• Integral detector: Sometimes the radar return of an object does not

produce a high enough peak to be detected by the peak detector.

The integral detector calculates the integral under the peaks and

present them as a target if the integral value is greater than a certain limit. This method is used in this thesis for human detection

and tracking and provided a good performance.

3.3.4 Target Tracking

The target tracker algorithm developed in this thesis is designed based

on the combination of the peak detector and the integral detector. A

3.3 Signal Processing Algorithms 35

Figure 3.9: CFAR processing.

comparing the neighboring cells to the cell under test and a decision

is made about if a cell under test is a target or not. The advantage

of this method is that the adaptive threshold keeps the probability

of false positive at a constant value. In this thesis, CFAR detector

is used for human walking detection and the results are presented

in paper (B).

• Peak detector: This method detects the peaks in the range measurement data (fast time) based on a certain limit. These peaks

are presented as potential targets. This method is used in this

thesis for human detection and tracking and provided a good performance.

• Integral detector: Sometimes the radar return of an object does not

produce a high enough peak to be detected by the peak detector.

The integral detector calculates the integral under the peaks and

present them as a target if the integral value is greater than a certain limit. This method is used in this thesis for human detection

and tracking and provided a good performance.

3.3.4 Target Tracking

The target tracker algorithm developed in this thesis is designed based

on the combination of the peak detector and the integral detector. A

47

36 Chapter 3. System Design and Validation

Figure 3.10: Flow chart of the target tracker algorithm.

flow chart of this algorithm is shown in 3.10. The target tracker algorithms is used for detection of walking human. In paper (B) the target

tracker algorithms is used in combination with CFAR and provided good

results in an anechoic chamber. The algorithm does not provide a good

performance in the office case (the rate of false positive is quite high

(51%)).

3.3.5 Other Algorithms

In this thesis, other algorithms are developed for other applications than

target detection and tracking. Two of these algorithms are presented

below.

Nonlinear distance mapping

Nonlinear distance mapping maps the data to get its amplitudes to be

independent of the distance i.e. echos from far shall be able to ”compete”

with echos from near. This is mostly due to a better representation of

the targets at larger distances. It has been observed that the modulation

is not linear by measurements of a metal plate at different distances. By

using the fit function from MATLAB the following polynomial function

was estimated:

f(x) = 1461x

2 − 9119x + 15687 (3.3)

where x is every measurement point of the radar data.

36 Chapter 3. System Design and Validation

Figure 3.10: Flow chart of the target tracker algorithm.

flow chart of this algorithm is shown in 3.10. The target tracker algorithms is used for detection of walking human. In paper (B) the target

tracker algorithms is used in combination with CFAR and provided good

results in an anechoic chamber. The algorithm does not provide a good

performance in the office case (the rate of false positive is quite high

(51%)).

3.3.5 Other Algorithms

In this thesis, other algorithms are developed for other applications than

target detection and tracking. Two of these algorithms are presented

below.

Nonlinear distance mapping

Nonlinear distance mapping maps the data to get its amplitudes to be

independent of the distance i.e. echos from far shall be able to ”compete”

with echos from near. This is mostly due to a better representation of

the targets at larger distances. It has been observed that the modulation

is not linear by measurements of a metal plate at different distances. By

using the fit function from MATLAB the following polynomial function

was estimated:

f(x) = 1461x

2 − 9119x + 15687 (3.3)

where x is every measurement point of the radar data.

48

3.3 Signal Processing Algorithms 37

Up-sampling

Due to the stability of the signal in x-axis by up-sampling the signal

it is possible to reach a better accuracy. Theoretically the radar range

resolution is 7.5 cm based on the center frequency. By up-sampling

the signal 20 times it was possible to reach around 3 mm precision in

range resolution. The increased resolution made it possible to detect

fine movements such as movement of the metal plate in simulation of

the respiratory activity in 3.2.4 .

3.3 Signal Processing Algorithms 37

Up-sampling

Due to the stability of the signal in x-axis by up-sampling the signal

it is possible to reach a better accuracy. Theoretically the radar range

resolution is 7.5 cm based on the center frequency. By up-sampling

the signal 20 times it was possible to reach around 3 mm precision in

range resolution. The increased resolution made it possible to detect

fine movements such as movement of the metal plate in simulation of

the respiratory activity in 3.2.4 .

49

Chapter 4. Contribution

Chapter 4

Contribution

In this chapter a summary of the published papers A-C, the scientific

contribution of the papers and the author’s contributions are presented.

• Paper A Experimental Comparison Study of UWB Technologies

for Static Human Detection

Melika Hozhabri, Magnus Otterskog, Nikola Petrovic and Martin

Ekstr¨om

IEEE International Conference on Ubiquitous Wireless Broadband

(ICUWB 2016), Nanjing, China.

Abstract: This paper compares two dominant Ultra Wide-Band

(UWB) radar technologies Impulse and M-sequence for static human being detection in free space. The hardware and software

platform for each system is described separately. These two radar

platform performances are tested in real conditions and the results

show that M-sequence UWB radar is better suited for detecting

the static human target in larger distances.

Contribution: A quantitative measurement campaign for comparison of two most used radar technologies for static human detection

is done. These measurements can be used as an indication of performances of these two technologies for human being detection.

Author’s contribution: I have been the main author of this paper

and a major part of the idea was mine. I have planned and performed the measurements with help of Radarbolaget that provided

38

Chapter 4. Contribution

Chapter 4

Contribution

In this chapter a summary of the published papers A-C, the scientific

contribution of the papers and the author’s contributions are presented.

• Paper A Experimental Comparison Study of UWB Technologies

for Static Human Detection

Melika Hozhabri, Magnus Otterskog, Nikola Petrovic and Martin

Ekstr¨om

IEEE International Conference on Ubiquitous Wireless Broadband

(ICUWB 2016), Nanjing, China.

Abstract: This paper compares two dominant Ultra Wide-Band

(UWB) radar technologies Impulse and M-sequence for static human being detection in free space. The hardware and software

platform for each system is described separately. These two radar

platform performances are tested in real conditions and the results

show that M-sequence UWB radar is better suited for detecting

the static human target in larger distances.

Contribution: A quantitative measurement campaign for comparison of two most used radar technologies for static human detection

is done. These measurements can be used as an indication of performances of these two technologies for human being detection.

Author’s contribution: I have been the main author of this paper

and a major part of the idea was mine. I have planned and performed the measurements with help of Radarbolaget that provided

38

50

39

the hardware. I wrote most of the paper and analyzed the results.

• Paper B Study of Environment Effect on Detection of Walking

Human by M-Sequence UWB Radar

Melika Hozhabri, Per-Olov Risman and Nikola Petrovic 2016 IEEE

Conference on Antenna Measurements & Applications (CAMA)

Abstract : This paper presents an experimental comparison study

of human movement and presence detection in different environments using ultra wide-band (UWB) M-Sequence radar. The benchmarking measurements are made in an anechoic chamber and repeated in an open office environment. The wave forms of the background noise and scattered amplitudes of a human body are measured and compared. A set of detection algorithms and filters

which are developed to track the human movement and presence

is presented and the tracking results in these two environments are

compared to each other.

Contribution: These quantitative measurements show that the

multipath reflection has most contribution of false alarm. The

target tracking algorithm is developed from scratch based on some

input argument from the user.

Author’s contribution: I have been the main author of this paper. I

have planned and performed the measurements with help of Delta

that provided the semi-anechoic chamber. I wrote most of the

paper and partly analyzed the results. I partly developed the signal

processing algorithms and filters.

• Paper C Comparison of UWB Radar Backscattering by the Human Torso and a Phantom

Melika Hozhabri, Per-Olov Risman and Nikola Petrovic 2018 IEEE

Conference on Antenna Measurements & Applications (CAMA)

Abstract: An Ultra Wide-Band (UWB) radar is used to measure

the backscattering of a human and a human phantom. The choice

of material and shape for the human phantom is discussed. The

dielectric properties of the material (wet sand) used in the experiment are measured by a retromodeling technique and also calculated by mixture formulas. The appropriate frequency choice for

the application is discussed.

Contribution: A phantom of human trunk is developed and tested.

39

the hardware. I wrote most of the paper and analyzed the results.

• Paper B Study of Environment Effect on Detection of Walking

Human by M-Sequence UWB Radar

Melika Hozhabri, Per-Olov Risman and Nikola Petrovic 2016 IEEE

Conference on Antenna Measurements & Applications (CAMA)

Abstract : This paper presents an experimental comparison study

of human movement and presence detection in different environments using ultra wide-band (UWB) M-Sequence radar. The benchmarking measurements are made in an anechoic chamber and repeated in an open office environment. The wave forms of the background noise and scattered amplitudes of a human body are measured and compared. A set of detection algorithms and filters

which are developed to track the human movement and presence

is presented and the tracking results in these two environments are

compared to each other.

Contribution: These quantitative measurements show that the

multipath reflection has most contribution of false alarm. The

target tracking algorithm is developed from scratch based on some

input argument from the user.

Author’s contribution: I have been the main author of this paper. I

have planned and performed the measurements with help of Delta

that provided the semi-anechoic chamber. I wrote most of the

paper and partly analyzed the results. I partly developed the signal

processing algorithms and filters.

• Paper C Comparison of UWB Radar Backscattering by the Human Torso and a Phantom

Melika Hozhabri, Per-Olov Risman and Nikola Petrovic 2018 IEEE

Conference on Antenna Measurements & Applications (CAMA)

Abstract: An Ultra Wide-Band (UWB) radar is used to measure

the backscattering of a human and a human phantom. The choice

of material and shape for the human phantom is discussed. The

dielectric properties of the material (wet sand) used in the experiment are measured by a retromodeling technique and also calculated by mixture formulas. The appropriate frequency choice for

the application is discussed.

Contribution: A phantom of human trunk is developed and tested.

51

40 Chapter 4. Contribution

The quantitative measurements show that the phantom can represent the human trunk in radar measurements. It is also shown

that UWB radar has the capability of detect the breast/neck/head

distance differences.

Author’s contribution: I have been the main author of this paper. I

have planned and performed the measurements with help of Radarbolaget in G¨avle University that provided the radar hardware. I

wrote most of the paper and partly analyzed the results.

40 Chapter 4. Contribution

The quantitative measurements show that the phantom can represent the human trunk in radar measurements. It is also shown

that UWB radar has the capability of detect the breast/neck/head

distance differences.

Author’s contribution: I have been the main author of this paper. I

have planned and performed the measurements with help of Radarbolaget in G¨avle University that provided the radar hardware. I

wrote most of the paper and partly analyzed the results.

52

Chapter 5

Conclusion and Future

Work

This chapter presents the summary of this thesis and the possible future

directions.

5.1 Conclusion

This thesis focuses on human detection in enclosed industrial environments with UWB radar and is performed in collaboration with industry.

It therefore deals with a real world application where the requirements

are well defined and rigid, and false positive and negative outputs can be

costly in robotic or a mining applications as well as in terms of injuries

and even loss of life.

M-sequence and pulse radar are two commercial UWB radar systems

that are widely used for human detection in literature but their performance were not compared in an experimental set-up. An experimental

measurement of a static human being at different distances is performed

in paper (A). The results show that M-sequence UWB radar is better

suited for detecting the static human target in larger distances at the

price of relative higher power consumption.

Humans have different body structure and clothing and that affect

the measurements. To make the measurements more reliable for different

set-ups a phantom of human torso is built based on the materials that

41

Chapter 5

Conclusion and Future

Work

This chapter presents the summary of this thesis and the possible future

directions.

5.1 Conclusion

This thesis focuses on human detection in enclosed industrial environments with UWB radar and is performed in collaboration with industry.

It therefore deals with a real world application where the requirements

are well defined and rigid, and false positive and negative outputs can be

costly in robotic or a mining applications as well as in terms of injuries

and even loss of life.

M-sequence and pulse radar are two commercial UWB radar systems

that are widely used for human detection in literature but their performance were not compared in an experimental set-up. An experimental

measurement of a static human being at different distances is performed

in paper (A). The results show that M-sequence UWB radar is better

suited for detecting the static human target in larger distances at the

price of relative higher power consumption.

Humans have different body structure and clothing and that affect

the measurements. To make the measurements more reliable for different

set-ups a phantom of human torso is built based on the materials that

41

53

42 Chapter 5. Conclusion and Future Work

have similar electromagnetic properties as human body. The results are

presented in paper (C) and it is answering the research question 3.

The UWB radar system shows some good capabilities for human

detection in short distances and due to its fine resolution in time it is

possible to estimate the target distance to the radar device with good

precision. The signal amplitude is not reliable as it shows relatively big

fluctuations in different scans therefore signal amplitude data is not used

in processing of the data. Signal amplitude can be used as a feature in

signal processing algorithms for better detection of the target.

There are several challenges for reaching the research goal (see 1.2).

It is also important to understand the effect of clutter on signal detection.

Based of the measurements in the office environment and published in

paper (B) the probability of false positive and negative outputs in a

cluttered environment is around 50%. This is not a satisfactory result

and needs further investigation.

In addition, discrimination of a human from other object is not an

easy task. Spatio-temporal properties of a dynamic human body such as

arm and hand movements could be a discerned by micro-Doppler processing which is not fully examined in this thesis but in case of static

humans the chest movement during breathing could not deliver satisfactory results in a real world scenario and needs further investigations.

Furthermore based on the Mie theory presented in paper (C) the 1–3

GHz system does not provide the best discerning for an object with the

size and geometry of the human body and use of lower frequencies is

recommended.

5.2 Future Work

Future work can be directed in different paths and some of them are

presented in this section.

During the work within this thesis, some of the system characteristics

such as precision and effect of environmental noise in the signal detection were measured and defined, whereas some other characteristics such

as the maximum range needs to be further investigated. Furthermore,

additional investigations are needed to determine the origin of the high

percentage of the false positive and negative outputs; how large part

that is dependent on the signal processing algorithms and dependent on

the system/hardware, respectively.

42 Chapter 5. Conclusion and Future Work

have similar electromagnetic properties as human body. The results are

presented in paper (C) and it is answering the research question 3.

The UWB radar system shows some good capabilities for human

detection in short distances and due to its fine resolution in time it is

possible to estimate the target distance to the radar device with good

precision. The signal amplitude is not reliable as it shows relatively big

fluctuations in different scans therefore signal amplitude data is not used

in processing of the data. Signal amplitude can be used as a feature in

signal processing algorithms for better detection of the target.

There are several challenges for reaching the research goal (see 1.2).

It is also important to understand the effect of clutter on signal detection.

Based of the measurements in the office environment and published in

paper (B) the probability of false positive and negative outputs in a

cluttered environment is around 50%. This is not a satisfactory result

and needs further investigation.

In addition, discrimination of a human from other object is not an

easy task. Spatio-temporal properties of a dynamic human body such as

arm and hand movements could be a discerned by micro-Doppler processing which is not fully examined in this thesis but in case of static

humans the chest movement during breathing could not deliver satisfactory results in a real world scenario and needs further investigations.

Furthermore based on the Mie theory presented in paper (C) the 1–3

GHz system does not provide the best discerning for an object with the

size and geometry of the human body and use of lower frequencies is

recommended.

5.2 Future Work

Future work can be directed in different paths and some of them are

presented in this section.

During the work within this thesis, some of the system characteristics

such as precision and effect of environmental noise in the signal detection were measured and defined, whereas some other characteristics such

as the maximum range needs to be further investigated. Furthermore,

additional investigations are needed to determine the origin of the high

percentage of the false positive and negative outputs; how large part

that is dependent on the signal processing algorithms and dependent on

the system/hardware, respectively.

54

5.2 Future Work 43

In paper (B) the choice of the frequency for human body is discussed.

Based on physical dimensions of the human body and the human tissues

permittivity, the discerning of a human body are likely improved by

choosing lower operating frequencies typically around 70 to 200 MHz,

since these could improve the discrimination of the trunk by its size in

relation to the wavelength.

Using the Multiple Input Multiple Output (MIMO) system can reveal

more details about the targets. Due to scalability of the chosen UWB

system it is possible to connect 12 antenna pairs to it and subsequently

gain more information about the target.

One other possibility is to use multiple sensors to take advantage of

each sensor strength to increased confidence of detection and decrease

false positive and negative outputs. Combination of radar sensor with

cameras may be a next logical step.

Last but not least, other signal and data processing approaches such

as Machine Learning (ML) and Artificial Intelligence (AI) can be used

for detection, target tracking and target classification that can improve

the target detection and classification.

5.2 Future Work 43

In paper (B) the choice of the frequency for human body is discussed.

Based on physical dimensions of the human body and the human tissues

permittivity, the discerning of a human body are likely improved by

choosing lower operating frequencies typically around 70 to 200 MHz,

since these could improve the discrimination of the trunk by its size in

relation to the wavelength.

Using the Multiple Input Multiple Output (MIMO) system can reveal

more details about the targets. Due to scalability of the chosen UWB

system it is possible to connect 12 antenna pairs to it and subsequently

gain more information about the target.

One other possibility is to use multiple sensors to take advantage of

each sensor strength to increased confidence of detection and decrease

false positive and negative outputs. Combination of radar sensor with

cameras may be a next logical step.

Last but not least, other signal and data processing approaches such

as Machine Learning (ML) and Artificial Intelligence (AI) can be used

for detection, target tracking and target classification that can improve

the target detection and classification.

55

Chapter A. Abbrevations

Appendix A

Abbrevations

AWGN Additive White Gaussian Noise

AIK Akaike Information Criterion

AUT Antenna Under Test

CFAR Constant False Alarm Rate

CWT Continuous Wavelet Transform

EMI Electromagnetic Interference

EM Electromagnetic

FDTD Finite Difference Time Domain

FFT Fast Fourier Transform

FCC Federal Communications Commission

FMCW Frequency Modulated Continuous Wave

GPS Global Positioning System

HMM Hidden Markov Model

IIR Infinite Impulse Response

LOS Line Of Sight

MA Measurement Antenna

MTI Moving Target Indication

MTT Multi-Target Tracking

PCA Principal Component Analysis

PDF Probability Density Function

44

Chapter A. Abbrevations

Appendix A

Abbrevations

AWGN Additive White Gaussian Noise

AIK Akaike Information Criterion

AUT Antenna Under Test

CFAR Constant False Alarm Rate

CWT Continuous Wavelet Transform

EMI Electromagnetic Interference

EM Electromagnetic

FDTD Finite Difference Time Domain

FFT Fast Fourier Transform

FCC Federal Communications Commission

FMCW Frequency Modulated Continuous Wave

GPS Global Positioning System

HMM Hidden Markov Model

IIR Infinite Impulse Response

LOS Line Of Sight

MA Measurement Antenna

MTI Moving Target Indication

MTT Multi-Target Tracking

PCA Principal Component Analysis

PDF Probability Density Function

44

56

45

RCS Radar Cross Section

RPU Radar Processing Unit

RPS Range Profile Subtraction

RMD Respiratory Motion Detection

RMS Root Mean Square

RQ Research Question

STA/LTA Short Term to Long Term Average

SMPM Specular Multi-Path Model

SVM Support Vector Machine

TOA Time Of Arrival

UWB Ultra Wide-Band

WRT Wide-band Radar Transceiver

45

RCS Radar Cross Section

RPU Radar Processing Unit

RPS Range Profile Subtraction

RMD Respiratory Motion Detection

RMS Root Mean Square

RQ Research Question

STA/LTA Short Term to Long Term Average

SMPM Specular Multi-Path Model

SVM Support Vector Machine

TOA Time Of Arrival

UWB Ultra Wide-Band

WRT Wide-band Radar Transceiver

57

58

Bibliography

[1] S. Chang, M. Wolf, and J. W. Burdick. Human detection and tracking via ultra-wideband (uwb) radar. In 2010 IEEE International

Conference on Robotics and Automation, pages 452–457, May 2010.

[2] Y Kilic, H Wymeersch, A Meijerink, M J Bentum, and W G Scanlon. An experimental study of UWB device-free person detection

and ranging. In Ultra-Wideband (ICUWB), 2013 IEEE International Conference on, pages 43–48, sep 2013.

[3] Go Shingu, Kenichi Takizawa, and Tetushi Ikegami. Human body

detection using UWB radar in an indoor environment. 2008 International Symposium on Communications and Information Technologies, ISCIT 2008, 77046:283–288, 2008.

[4] J. Sachs, M. Aftanas, S. Crabbe, M. Drutarovsky, R. Klukas,

D. Kocur, T. T. Nguyen, P. Peyerl, J. Rovnakova, and E. Zaikov.

Detection and tracking of moving or trapped people hidden by obstacles using ultra-wideband pseudo-noise radar. In 2008 European

Radar Conference, pages 408–411, Oct 2008.

[5] S. A. Rane, S. Sarkar, and A. Gaurav. Moving target localization

using ultra wideband sensing. In 2016 Online International Conference on Green Engineering and Technologies (IC-GET), pages 1–5,

Nov 2016.

[6] Rudolf Zetik, Stephen Crabbe, Jozef Krajnak, Peter Peyerl, J¨urgen

Sachs, and Reiner Thom¨a. Detection and localization of persons

behind obstacles using M-sequence through-the-wall radar, 2006.

47

Bibliography

[1] S. Chang, M. Wolf, and J. W. Burdick. Human detection and tracking via ultra-wideband (uwb) radar. In 2010 IEEE International

Conference on Robotics and Automation, pages 452–457, May 2010.

[2] Y Kilic, H Wymeersch, A Meijerink, M J Bentum, and W G Scanlon. An experimental study of UWB device-free person detection

and ranging. In Ultra-Wideband (ICUWB), 2013 IEEE International Conference on, pages 43–48, sep 2013.

[3] Go Shingu, Kenichi Takizawa, and Tetushi Ikegami. Human body

detection using UWB radar in an indoor environment. 2008 International Symposium on Communications and Information Technologies, ISCIT 2008, 77046:283–288, 2008.

[4] J. Sachs, M. Aftanas, S. Crabbe, M. Drutarovsky, R. Klukas,

D. Kocur, T. T. Nguyen, P. Peyerl, J. Rovnakova, and E. Zaikov.

Detection and tracking of moving or trapped people hidden by obstacles using ultra-wideband pseudo-noise radar. In 2008 European

Radar Conference, pages 408–411, Oct 2008.

[5] S. A. Rane, S. Sarkar, and A. Gaurav. Moving target localization

using ultra wideband sensing. In 2016 Online International Conference on Green Engineering and Technologies (IC-GET), pages 1–5,

Nov 2016.

[6] Rudolf Zetik, Stephen Crabbe, Jozef Krajnak, Peter Peyerl, J¨urgen

Sachs, and Reiner Thom¨a. Detection and localization of persons

behind obstacles using M-sequence through-the-wall radar, 2006.

47

59

48 Bibliography

[7] Amer Nezirovi´c, Alexander G. Yarovoy, and Leo P. Ligthart. Signal

processing for improved detection of trapped victims using UWB

radar. IEEE Transactions on Geoscience and Remote Sensing, 48(4

PART 2):2005–2014, apr 2010.

[8] Jana Rov´akov´a, Duˇsan Kocur, and Peter Kaˇzim´ır. Investigation of

localization accuracy for UWB radar operating in complex environment. Acta Polytechnica Hungarica, 10(5):203–219, 2013.

[9] G. Zhao, Q. Liang, and T. S. Durrani. Uwb radar target detection

based on hidden markov models. IEEE Access, 6:28702–28711, 2018.

[10] S. M. Patole, M. Torlak, D. Wang, and M. Ali. Automotive radars:

A review of signal processing techniques. IEEE Signal Processing

Magazine, 34(2):22–35, March 2017.

[11] M. Zlatanski, P. Sommer, F. Zurfluh, and G. L. Madonna. Radar

sensor for fenceless machine guarding and collaborative robotics. In

2018 IEEE International Conference on Intelligence and Safety for

Robotics (ISR), pages 19–25, Aug 2018.

[12] Thiago Teixeira, Gershon Dublon, and Andreas Savvides. A Survey

of Human-Sensing: Methods for Detecting Presence, Count, Location, Track, and Identity. ACM Computing Surveys, 5:1–35, 2010.

[13] Yakup Kilic, Henk Wymeersch, Arjan Meijerink, Mark J. Bentum,

and William G. Scanlon. Device-free person detection and ranging in UWB networks. IEEE Journal on Selected Topics in Signal

Processing, 8(1):43–54, 2014.

[14] Sang Hyun Chang, Naoki Mitsumoto, and Joel W. Burdick. An

algorithm for UWB radar-based human detection. IEEE National

Radar Conference - Proceedings, pages 0–5, 2009.

[15] M Imran and A Shoaib. Detection of multiple targets using ultrawideband radar. Master thesis, G¨avle University, Sweden, Feb.2011.

[16] H. G. Schantz. Introduction to ultra-wideband antennas. In IEEE

Conference on Ultra Wideband Systems and Technologies, 2003,

pages 1–9, Nov 2003.

48 Bibliography

[7] Amer Nezirovi´c, Alexander G. Yarovoy, and Leo P. Ligthart. Signal

processing for improved detection of trapped victims using UWB

radar. IEEE Transactions on Geoscience and Remote Sensing, 48(4

PART 2):2005–2014, apr 2010.

[8] Jana Rov´akov´a, Duˇsan Kocur, and Peter Kaˇzim´ır. Investigation of

localization accuracy for UWB radar operating in complex environment. Acta Polytechnica Hungarica, 10(5):203–219, 2013.

[9] G. Zhao, Q. Liang, and T. S. Durrani. Uwb radar target detection

based on hidden markov models. IEEE Access, 6:28702–28711, 2018.

[10] S. M. Patole, M. Torlak, D. Wang, and M. Ali. Automotive radars:

A review of signal processing techniques. IEEE Signal Processing

Magazine, 34(2):22–35, March 2017.

[11] M. Zlatanski, P. Sommer, F. Zurfluh, and G. L. Madonna. Radar

sensor for fenceless machine guarding and collaborative robotics. In

2018 IEEE International Conference on Intelligence and Safety for

Robotics (ISR), pages 19–25, Aug 2018.

[12] Thiago Teixeira, Gershon Dublon, and Andreas Savvides. A Survey

of Human-Sensing: Methods for Detecting Presence, Count, Location, Track, and Identity. ACM Computing Surveys, 5:1–35, 2010.

[13] Yakup Kilic, Henk Wymeersch, Arjan Meijerink, Mark J. Bentum,

and William G. Scanlon. Device-free person detection and ranging in UWB networks. IEEE Journal on Selected Topics in Signal

Processing, 8(1):43–54, 2014.

[14] Sang Hyun Chang, Naoki Mitsumoto, and Joel W. Burdick. An

algorithm for UWB radar-based human detection. IEEE National

Radar Conference - Proceedings, pages 0–5, 2009.

[15] M Imran and A Shoaib. Detection of multiple targets using ultrawideband radar. Master thesis, G¨avle University, Sweden, Feb.2011.

[16] H. G. Schantz. Introduction to ultra-wideband antennas. In IEEE

Conference on Ultra Wideband Systems and Technologies, 2003,

pages 1–9, Nov 2003.

60

Bibliography 49

[17] W. Wiesbeck, G. Adamiuk, and C. Sturm. Basic properties and design principles of uwb antennas. Proceedings of the IEEE, 97(2):372–

385, Feb 2009.

[18] Otar Javashvili. UWB-Antennas. Master’s thesis, University of

G¨avle, 2009.

[19] Jana Rov´akov´a and Duˇsan Kocur. UWB Radar Signal Processing

for Positioning of Persons Changing Their Motion Activity. Acta

Polytechnica Hungarica, 10:165–184, 2013.

[20] D. A. Shnidman. Generalized radar clutter model. IEEE Transactions on Aerospace and Electronic Systems, 35(3):857–865, Jul

1999.

[21] J. D. Bryan, J. Kwon, N. Lee, and Y. Kim. Application of ultrawide band radar for classification of human activities. IET Radar,

Sonar Navigation, 6(3):172–179, March 2012.

[22] Yazhou Wang. UWB Pulse Radar for Human Imaging and Doppler

Detection Applications. PhD dissertation, University of Tennessee,

may 2012.

[23] V. C. Chen. Detection and analysis of human motion by radar. In

2008 IEEE Radar Conference, pages 1–4, May 2008.

[24] James D. Taylor. Ultrawideband Radar Technology. CRC press,

2000.

[25] Jeffrey A. Nanzer. A Review of Microwave Wireless Techniques for

Human Presence Detection and Classification. IEEE Transactions

on Microwave Theory and Techniques, 65(5):1780–1794, 2017.

[26] B. Denis, L. Ouvry, B. Uguen, and F. Tehoffo-Talom. Advanced

Bayesian Filtering Techniques for UWB Tracking Systems in Indoor

Environments. In 2005 IEEE International Conference on UltraWideband, pages 638–643. IEEE.

[27] Bita Sobhani, Enrico Paolini, Andrea Giorgetti, Matteo Mazzotti,

and Marco Chiani. Target Tracking for UWB Multistatic Radar

Sensor Networks. IEEE Journal of Selected Topics in Signal Processing, 8(1):125–136, feb 2014.

Bibliography 49

[17] W. Wiesbeck, G. Adamiuk, and C. Sturm. Basic properties and design principles of uwb antennas. Proceedings of the IEEE, 97(2):372–

385, Feb 2009.

[18] Otar Javashvili. UWB-Antennas. Master’s thesis, University of

G¨avle, 2009.

[19] Jana Rov´akov´a and Duˇsan Kocur. UWB Radar Signal Processing

for Positioning of Persons Changing Their Motion Activity. Acta

Polytechnica Hungarica, 10:165–184, 2013.

[20] D. A. Shnidman. Generalized radar clutter model. IEEE Transactions on Aerospace and Electronic Systems, 35(3):857–865, Jul

1999.

[21] J. D. Bryan, J. Kwon, N. Lee, and Y. Kim. Application of ultrawide band radar for classification of human activities. IET Radar,

Sonar Navigation, 6(3):172–179, March 2012.

[22] Yazhou Wang. UWB Pulse Radar for Human Imaging and Doppler

Detection Applications. PhD dissertation, University of Tennessee,

may 2012.

[23] V. C. Chen. Detection and analysis of human motion by radar. In

2008 IEEE Radar Conference, pages 1–4, May 2008.

[24] James D. Taylor. Ultrawideband Radar Technology. CRC press,

2000.

[25] Jeffrey A. Nanzer. A Review of Microwave Wireless Techniques for

Human Presence Detection and Classification. IEEE Transactions

on Microwave Theory and Techniques, 65(5):1780–1794, 2017.

[26] B. Denis, L. Ouvry, B. Uguen, and F. Tehoffo-Talom. Advanced

Bayesian Filtering Techniques for UWB Tracking Systems in Indoor

Environments. In 2005 IEEE International Conference on UltraWideband, pages 638–643. IEEE.

[27] Bita Sobhani, Enrico Paolini, Andrea Giorgetti, Matteo Mazzotti,

and Marco Chiani. Target Tracking for UWB Multistatic Radar

Sensor Networks. IEEE Journal of Selected Topics in Signal Processing, 8(1):125–136, feb 2014.

61

[28] M.I. Skolnik. Radar Handbook, Third Edition. Electronics electrical

engineering. McGraw-Hill Education, 2008.

[29] Traian Dogaru, Lam Nguyen, and Calvin Le. Computer models

of the human body signature for sensing through the wall radar

applications. Sensors (Peterborough, NH), (September):56, 2007.

[30] Naoyuki Yamada, Yuichi Tanaka, and Kunitoshi Nishikawa. Radar

cross section for pedestrian in 76GHz band. In 35th European Microwave Conference 2005 - Conference Proceedings, volume 2, pages

1015–1018, 2005.

[31] G. Ossberger, T. Buchegger, E. Schimback, A. Stelzer, and

R. Weigel. Non-invasive respiratory movement detection and monitoring of hidden humans using ultra wideband pulse radar. In

2004 International Workshop on Ultra Wideband Systems Joint with

Conference on Ultra Wideband Systems and Technologies. Joint

UWBST IWUWBS 2004 (IEEE Cat. No.04EX812), pages 395–399,

May 2004.

[32] J M Cramer, R A Scholtz, and M Z Win. Evaluation of an UltraWideband Propagation Channel. pages 1–9.

[33] S. S. Ram, C. Christianson, Y. Kim, and H. Ling. Simulation and

analysis of human micro-dopplers in through-wall environments.

IEEE Transactions on Geoscience and Remote Sensing, 48(4):2015–

2023, April 2010.

[34] Michael D. Foegelle. Antenna Pattern Measurement: Concepts and

Techniques. Technical report.

[35] M Kmec1 P Peyerl2 J. Sachs1 R. Herrmann1. Stimulation of UWBsensors: pulse or maximum sequence?

[36] D. Urdzk and D. Kocur. Cfar detectors for through wall tracking

of moving targets by m-sequence uwb radar. In 20th International

Conference Radioelektronika 2010, pages 1–4, April 2010.

[28] M.I. Skolnik. Radar Handbook, Third Edition. Electronics electrical

engineering. McGraw-Hill Education, 2008.

[29] Traian Dogaru, Lam Nguyen, and Calvin Le. Computer models

of the human body signature for sensing through the wall radar

applications. Sensors (Peterborough, NH), (September):56, 2007.

[30] Naoyuki Yamada, Yuichi Tanaka, and Kunitoshi Nishikawa. Radar

cross section for pedestrian in 76GHz band. In 35th European Microwave Conference 2005 - Conference Proceedings, volume 2, pages

1015–1018, 2005.

[31] G. Ossberger, T. Buchegger, E. Schimback, A. Stelzer, and

R. Weigel. Non-invasive respiratory movement detection and monitoring of hidden humans using ultra wideband pulse radar. In

2004 International Workshop on Ultra Wideband Systems Joint with

Conference on Ultra Wideband Systems and Technologies. Joint

UWBST IWUWBS 2004 (IEEE Cat. No.04EX812), pages 395–399,

May 2004.

[32] J M Cramer, R A Scholtz, and M Z Win. Evaluation of an UltraWideband Propagation Channel. pages 1–9.

[33] S. S. Ram, C. Christianson, Y. Kim, and H. Ling. Simulation and

analysis of human micro-dopplers in through-wall environments.

IEEE Transactions on Geoscience and Remote Sensing, 48(4):2015–

2023, April 2010.

[34] Michael D. Foegelle. Antenna Pattern Measurement: Concepts and

Techniques. Technical report.

[35] M Kmec1 P Peyerl2 J. Sachs1 R. Herrmann1. Stimulation of UWBsensors: pulse or maximum sequence?

[36] D. Urdzk and D. Kocur. Cfar detectors for through wall tracking

of moving targets by m-sequence uwb radar. In 20th International

Conference Radioelektronika 2010, pages 1–4, April 2010.

62

Labels

. (5) 4K (1) a (14) ABANDONED (51) Abandoned Medieval Castle (1) Abandoned Mine (2) Advanced Civilization (36) AI Weapons (16) ALIEN EVIDENCE (29) Alien Life (3) Alien Technology (3) Aliens and Robots (4) Almost DIED (4) ancient (31) Ancient Artifacts (9) Ancient Artifacts Pyramids (9) Ancient Ruins (7) Ancient technology using physics and chemistry. Ancient technology (5) Ancient White People. waga (1) antennas (3) Archaix (2) Artifacts (1) Artificial Sun (1) as IAM a420rhbrh. (1) Best Evidence Proving Aliens Exist (7) bravo (1) CABBAGE PATCH (1) Camping (3) catastrophe (31) Caught on Camera (1) CERN (1) change the future (20) chemical engineering (1) Civilization (1) Classified (2) CLONING (1) Conspiracy (1) Corporate (10) Cover-Ups (29) cp freaks waste of skin trash sicko. repent or die! no more (1) creative frequencies (27) Creepiest TikToks (4) Creepy (1) Creepy and Scary (3) CREEPY TikTok (1) Creepy TikTok's (14) Creepy TikToks (6) Creepy videos (2) CRIMINAL (7) Criminal Messaging Network (1) Crusade (3) Cursed UUnlockednlUnlockedocked (2) Dark Corners of the internet (125) DARK MATTER (14) DARK MATTER EXISTS 2022 (VERIFIED BY THE SHADOW THEORY AND LAW PARTICLE) (2) Dark Matter Portals (1) DARK WEB (2) Defy The Laws Of Physics (3) DEMON (5) DEMONIC ENTITIES (5) Demons (3) destructive modern technologies (22) destructive technology (1) Did a (7) did you catch this??? life from the inanimate (1) dielectric fields (1) Disturbing (1) Disturbing Discoveries (1) Documentary (3) eclipse (1) electric fields (1) Electricity (1) Electrogravitic (1) energy (1) engineering (1) enhancing water (1) entities (12) Evidence (20) existence (1) exowomb (1) facts (1) fake moon (1) fake sun (2) FBI (1) fermi (1) ffake x (6) food (1) Fractal Toroidal Moment (1) fucked up shit (1) funding help (11) genius (9) ghosts (79) giving back (1) Glitch (64) Graveyard (2) guns (4) Harvesting Human Souls (1) HAUNTED (11) HAUNTED f (50) Haunted House (5) he Amazon Rainforest (1) hemisync (17) HIDDEN . (2) history (17) Hole (1) huanitarian aid (1) Human History (1) human psyche. (5) humanity (9) illegal weapons systems (3) investigations (40) ionosphere. HAARP (5) Jerusalem (1) Kryptos Code 4 solved (2) law (8) Levitating Statue (1) Lidar (1) Lost Citied (1) Lost Cities (31) Lost Civilization Found (14) Lost Ruins (7) Lost Technology (89) LOVE (16) magnetic fields (1) magnetism (1) Mandela effect (9) Mansion (2) maps (17) Mars (1) Martian (1) matrix (82) Mega Machines (10) Megalithic (4) megaliths (7) Megastructure (3) military (32) Military Lasers and Directed Energy Weapons (8) missing (7) Monoliths (1) moon (20) moon and sun simulator (1) MORONS (1) mpox the facts (2) Mysterious (9) Mysterious Creatures (4) mysterious discoveries (41) Mystery history (1) n (1) nanobubble (1) NASA and the government (17) NASA government (3) NASA LIES (1) nazi Experiments (8) Nazi in plain-sight (1) Nazi in plainsight (1) nazi inplainsight (9) NEWS (54) non-human entities (16) nvestigations (6) OCCULT (88) Ocean Mysteries (11) on the Moon (2) Paranormal Files Marathon: Mind Boggling Sightings and Abductions (1) PARANORMAL INVESTIGATION (1) Patents (1) Phobos (1) Physics (2) police abuse (1) policy (1) Portal (2) Practical Application (2) Pre-Egyptian Technology (10) Pre-Flood -Civilization (1) Pre-Flood Ruins (9) Project Looking Glass (1) propaganda (16) Propulsion (2) psychological experimen (1) psychological experiment (5) Psychotronics (6) pump (4) Pyramid (8) Pyramids (7) quantum (1) Questions (1) REACTION (1) reaction creepy (11) Reality (9) red vs blue & white triangle (5) relic (4) research (4) Reverse Speech (1) ritual (1) rocket (8) Ruins (1) Secrets (1) sharing is caring (1) shipwrecks (3) SITES LINKED TO THE HIDDEN (5) Skinwalker (1) Sky Trumpets (1) Solomon's Temple (1) solutions (1) Sonic Magic (1) Sound (1) space (16) Space Programs (1) space weather (2) Strange Case (8) Strange Things Caught On Live TV (1) STRANGE Tik Toks. Realitys. R (2) sun (1) symbology (28) Temple (2) Terrifying Creatures From The Bible (1) Terrifying Experiments (5) the dark side of YouTube. (7) The Hidden (53) The Hidden banner ad (2) The Human Mind (6) The Moon (3) the True Cross. Holy (1) The Universe (1) The Unknown. (12) Tik Toks (1) Tik Toks. (2) TikTok (1) TikTok. cult (4) TikTok. culy (1) TikToks (1) time (1) Tomb Discovered (1) Treasure (1) Treasure and Artifact's Finds (2) truth (105) Tunnel (29) Tunnels (2) uap (1) ufo (68) UFOs (11) Underground (3) Unexplained (24) Unexplained Mysteries (2) Unknown Civilization (16) Unsolved Mysteries (166) Vampires Immortals (1) VIMANA (1) water (1) weather sat tools (17) Weird videos (1) Where did this COME FROM (1) white triangle (16)