The interaction between Terahertz radiation and biological tissue
#wakeup
😈💩👎
Affiliations expand
PMID: 11580188
https://pubmed.ncbi.nlm.nih.gov/11580188/
Abstract
Terahertz (THz) radiation occupies that region of the electromagnetic (EM) spectrum between approximately 0.3 and 20 THz. Recent advances in methods of producing THz radiation have stimulated interest in studying the interaction between radiation and biological molecules and tissue. Given that the photon energies associated with this region of the spectrum are 2.0 x 10(-22) to 1.3 x 10(-20) J, an analysis of the interactions requires an understanding of the permittivity and conductivity of the medium (which describe the bulk motions of the molecules) and the possible transitions between the molecular energy levels. This paper reviews current understanding of the interactions between THz radiation and biological molecules, cells and tissues. At frequencies below approximately 6 THz. the interaction may be understood as a classical EM wave interaction (using the parameters of permittivity and conductivity), whereas at higher frequencies. transitions between different molecular vibrational and rotational energy levels become increasingly important and are more readily understood using a quantum-mechanical framework. The latter is of particular interest in using THz to probe transitions between different vibrational modes of deoxyribonucleic acid. Much additional experimental work is required in order to fully understand the interactions between THz radiation and biological molecules and tissue.
Similar articles
Grosse E.Phys Med Biol. 2002 Nov 7;47(21):3755-60. doi: 10.1088/0031-9155/47/21/312.PMID: 12452564 Review.
Fitzgerald AJ, Berry E, Zinovev NN, Walker GC, Smith MA, Chamberlain JM.Phys Med Biol. 2002 Apr 7;47(7):R67-84. doi: 10.1088/0031-9155/47/7/201.PMID: 11996068 Review.
Walker GC, Berry E, Smye SW, Zinov'ev NN, Fitzgerald AJ, Miles RE, Chamberlain M, Smith MA.Phys Med Biol. 2004 May 21;49(10):1853-64. doi: 10.1088/0031-9155/49/10/002.PMID: 15214528
Tang ZF, Lin HT, Chen XW, Zhang ZF.Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Sep;29(9):2351-6.PMID: 19950627 Review. Chinese.
Qin Y, Zhang C, Zhu D, Zhu Y, Guo H, You G, Tang S.Opt Express. 2009 Jul 6;17(14):11558-64. doi: 10.1364/oe.17.011558.PMID: 19582072
Cited by 21 articles
Tang M, Zhang M, Xia L, Yang Z, Yan S, Wang H, Wei D, Du C, Cui HL.Biomed Opt Express. 2020 Aug 31;11(9):5362-5372. doi: 10.1364/BOE.400487. eCollection 2020 Sep 1.PMID: 33014620 Free PMC article.
Perera PGT, Appadoo DRT, Cheeseman S, Wandiyanto JV, Linklater D, Dekiwadia C, Truong VK, Tobin MJ, Vongsvivut J, Bazaka O, Bazaka K, Croft RJ, Crawford RJ, Ivanova EP.Cancers (Basel). 2019 Jan 31;11(2):162. doi: 10.3390/cancers11020162.PMID: 30709066 Free PMC article.
Shin HJ, Jang HW, Ok G.Sensors (Basel). 2018 Dec 6;18(12):4304. doi: 10.3390/s18124304.PMID: 30563253 Free PMC article.
Alfihed S, Bergen MH, Ciocoiu A, Holzman JF, Foulds IG.Micromachines (Basel). 2018 Sep 11;9(9):453. doi: 10.3390/mi9090453.PMID: 30424386 Free PMC article.
Kamburoğlu K, Karagöz B, Altan H, Özen D.Dentomaxillofac Radiol. 2019 Feb;48(2):20180250. doi: 10.1259/dmfr.20180250. Epub 2018 Nov 7.PMID: 30379560 Free PMC article.
Publication types
Research Support, Non-U.S. Gov't
Review
MeSH terms
Amino Acids / radiation effects*
Animals
DNA / radiation effects*
Electromagnetic Phenomena*
Photons
Radiation*
Spectrophotometry
Time Factor
Water
Substances
Amino Acids
Related information
LinkOut - more resources
Full Text Sources