Electrokinetic apparatus reproduction
c6jones7
The Biefeld–Brown effect was initially investigated by Thomas Townsend Brown (USA) and Dr. Paul Alfred Biefeld (Germany) in the 1920s. Research continued through the 1950s and 1960s by Brown and other researchers. The use of this electrogravitic propulsion effect was further explored during the publicized era of gravity control propulsion research, which included the United States gravity control propulsion initiative. Research, based upon Thomas Townsend Brown's hypotheses, includes the idea that electrogravitics could be used as a means of propulsion for aircraft and spacecraft. Electrogravitic processes use an electric field to charge or, more properly, polarize an object with a specially-constructed shape. Brown's disks, for example, used an "asymmetrical" capacitor, sketches of which can be found in the literature pertaining to the Biefeld–Brown effect.
An ionocraft or ion-propelled aircraft, commonly known as a lifter or hexalifter, is an electrohydrodynamic (EHD) device (utilizing an electrical phenomenon known as the Biefeld–Brown effect) to produce thrust in the air, without requiring any combustion or moving parts. The term "Ionocraft" dates back to the 1960s, an era in which EHD experiments were at their peak. In its basic form, it simply consists of two parallel conductive electrodes, one in the form of a fine wire and another which may be formed of either a wire grid, tubes or foil skirts with a smooth round surface. When such an arrangement is powered up by high voltage in the range of a few kilovolts, it produces thrust. The ionocraft forms part of the EHD thruster family, but is a special case in which the ionisation and accelerating stages are combined into a single stage.
An EHD (electrohydrodynamic) thruster is a propulsion device based on ionic fluid propulsion, that works without moving parts, using only electrical energy. The principle of ionic (air) propulsion with corona-generated charged particles has been known since the earliest days of the discovery of electricity, with references dating back to year 1709 in a book titled Physico-Mechanical Experiments on Various Subjects by Francis Hauksbee. The first publicly demonstrated tethered model was developed by Major De Seversky in the form of an Ionocraft, a single stage EHD thruster, in which the thruster lifts itself by propelling air downwards. De Seversky contributed much to its basic physics and its construction variations during the year 1960 and has in fact patented his device U.S. Patent 3,130,945 , April 28, 1964). Only electric fields are used in this propulsion method. The basic components of an EHD thruster are two: an ioniser and an ion accelerator. Ionocrafts form part of this category, but their energy conversion efficiency is severely limited to less than 1% by the fact that the ioniser and accelerating mechanisms are not independent. Unlike the ionocraft, within an EHD thruster, the air gap in its second stage is not restricted or related to the Corona discharge voltage of its ionising stage. Unlike related propulsion devices, they need a fluid for their operation and cannot operate in space or vacuum.
An ionocraft or ion-propelled aircraft, commonly known as a lifter or hexalifter, is an electrohydrodynamic (EHD) device (utilizing an electrical phenomenon known as the Biefeld–Brown effect) to produce thrust in the air, without requiring any combustion or moving parts. The term "Ionocraft" dates back to the 1960s, an era in which EHD experiments were at their peak. In its basic form, it simply consists of two parallel conductive electrodes, one in the form of a fine wire and another which may be formed of either a wire grid, tubes or foil skirts with a smooth round surface. When such an arrangement is powered up by high voltage in the range of a few kilovolts, it produces thrust. The ionocraft forms part of the EHD thruster family, but is a special case in which the ionisation and accelerating stages are combined into a single stage.
An EHD (electrohydrodynamic) thruster is a propulsion device based on ionic fluid propulsion, that works without moving parts, using only electrical energy. The principle of ionic (air) propulsion with corona-generated charged particles has been known since the earliest days of the discovery of electricity, with references dating back to year 1709 in a book titled Physico-Mechanical Experiments on Various Subjects by Francis Hauksbee. The first publicly demonstrated tethered model was developed by Major De Seversky in the form of an Ionocraft, a single stage EHD thruster, in which the thruster lifts itself by propelling air downwards. De Seversky contributed much to its basic physics and its construction variations during the year 1960 and has in fact patented his device U.S. Patent 3,130,945 , April 28, 1964). Only electric fields are used in this propulsion method. The basic components of an EHD thruster are two: an ioniser and an ion accelerator. Ionocrafts form part of this category, but their energy conversion efficiency is severely limited to less than 1% by the fact that the ioniser and accelerating mechanisms are not independent. Unlike the ionocraft, within an EHD thruster, the air gap in its second stage is not restricted or related to the Corona discharge voltage of its ionising stage. Unlike related propulsion devices, they need a fluid for their operation and cannot operate in space or vacuum.